SEASONAL VARIABILITY OF MESOSCALE EDDIES OF THE LOFOTEN BASIN USING SATELLITE AND MODEL DATA
Abstract and keywords
Abstract (English):
The Lofoten Basin in the Norwegian Sea is the area where the warm Atlantic Water exhibits the greatest loss of heat than anywhere else in the Nordic Seas. It is called a "hot spot" of the Nordic Seas because of its high intense mesoscale eddy activity. Mesoscale eddies contribute significantly to the total oceanic heat and salt transport by advective trapping, stirring and mixing, and thus play an important role in the heat and salt balance of the region. A purpose of this study is to examine seasonal variability of mesoscale eddies in the Lofoten Basin using satellite altimetry data and GLORYS reanalysis. Satellite altimetry is used to track individual eddies, and co-located vertical profiles based on GLORYS data allow to study thermohaline characteristics inside the eddy cores. We analyze numbers of cyclonic and anticyclonic eddies in the Lofoten Basin using an eddy identification and tracking algorithm and demonstrate that the occurrences of eddies depend strongly on the season. We analyze seasonal variability of temperature, salinity, and potential density anomalies in zonal sections across the core of the Lofoten Vortex and explore spatial variability of thermohaline characteristics of mesoscale eddies at the depth of 450 m in different seasons.

Keywords:
Lofoten Basin, Norwegian Sea, mesoscale eddies, altimetry, automatic detection
Text
Text (PDF): Read Download
References

1. Alexeev, G. V., M. V. Bagryantsev, P. V. Bogorodsky, V. B. Vasin, P. E. Shirokov (1991) , Structure and circulation of water masses in the area of an anticyclonic vortex in the north-eastern part of the Norwegian Sea, Probl. Arctic Antarct., 65, p. 14-23 (in Russian).

2. Alexeev, V. A., V. V. Ivanov, I. A. Repina, O. Yu. Lavrova, S. V. Stanichny (2016) , Convective structures in the Lofoten Basin based on satellite and Argo data, Izv. Atmos. Ocean. Phys., 52, no. 9, p. 1064-1077, https://doi.org/10.1134/S0001433816090036. ; ; EDN: https://elibrary.ru/WIOPVP

3. Bashmachnikov, I. L., et al. (2017) , On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea, Deep Sea Res. I, 128, p. 1-27, https://doi.org/10.1016/j.dsr.2017.08.001. ; ; EDN: https://elibrary.ru/XOVZRM

4. Belonenko, T. V., et al. (2018) , Horizontal advection of temperature and salinity by Rossby waves in the North Pacific, International Journal of Remote Sensing, 39, no. 8, p. 2177-2188, https://doi.org/10.1080/01431161.2017.1420932. ; ; EDN: https://elibrary.ru/XYCJQD

5. Belonenko, T. V., D. L. Volkov, V. K. Ozhigin, Yu. E. Norden (2014) , Circulation of waters in the Lofoten Basin of the Norwegian Sea, Vestn. S. Petersbur. Un-ta, 7, no. 2, p. 108-121.

6. Björk, G., B. G. Gustafsson, A. Stigebrandt (2001) , Upper layer circulation of the Nordic seas as inferred from the spatial distribution of heat and freshwater content, Polar Res., 20, p. 161-168, https://doi.org/10.3402/polar.v20i2.6513. ; DOI: https://doi.org/10.1111/j.1751-8369.2001.tb00052.x; EDN: https://elibrary.ru/YKFVIF

7. Bloshkina, E. V., V. V. Ivanov (2016) , Convective structures in the Norwegian and Greenland Seas based on simulation results with high spatial resolution, Proceedings of the Hydrometeorological Research Center of the Russian Federation, 361, p. 146-168.

8. Carton, X. J. (1992) , On the Merger of Shielded Vortices, EPL (Europhysics Letters), 18, no. 8, https://doi.org/10.1209/0295-5075/18/8/006.

9. Chelton, D. B., M. G. Schlax, R. M. Samelson (2011) , Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, p. 167-216, https://doi.org/10.1016/j.pocean.2011.01.002. ; ; EDN: https://elibrary.ru/YBYDIJ

10. Fedorov, K. N. (1983) , Physical Nature and Structure of Oceanic Fronts, 296 pp., Gidrometeoizdat, Leningrad (in Russian).

11. Fedorov, A. M., I. L. Bashmachnikov, T. V. Belonenko (2019) , Winter convection in the Lofoten Basin according to ARGO buoys and hydrodynamic modeling, Vestn S. Petersbur. Un-ta, Earth Sciences, 64, no. 3, p. 491-511 (in Russian).

12. Fer, I., A. Bosse, B. Ferron, P. Bouruet-Aubertot (2018) , The dissipation of kinetic energy in the Lofoten Basin Eddy, J. Phys. Oceanogr., 48, no. 6, p. 1299-1316, https://doi.org/10.1175/JPO-D-17-0244.1. ; ; EDN: https://elibrary.ru/VGXHES

13. Isachsen, P. E. (2015) , Baroclinic instability and the mesoscale eddy field around the Lofoten Basin, J. Geophys. Res., 120, no. 4, p. 2884-2903, https://doi.org/10.1002/2014JC010448. ; ; EDN: https://elibrary.ru/NFFTZP

14. Ivanov, V. V., A. A. Korablev (1995a) , Formation and regeneration of the pycnocline lens in the Norwegian Sea, Russ. Meteor. Hydrol., 9, p. 62-69.

15. Ivanov, V. V., A. A. Korablev (1995b) , Formation and regeneration of the pycnocline lens in the Norwegian Sea, Russ. Meteor. Hydrol., 10, p. 55-62.

16. Jakobsen, P., M. Ribergaard, D. Quadfasel, T. Schmith, C. Hughes (2003) , Near-surface circulation in the northern North Atlantic as inferred from Lagrangian drifters: Variability from the mesoscale to interannual, J. Geophys. Res., 108, no. C8, p. 3251-3254, https://doi.org/10.1029/2002JC001554. ; DOI: https://doi.org/10.1029/2002jc001554; EDN: https://elibrary.ru/FUXHHG

17. Köhl, A. (2007) , Generation and stability of a quasi-permanent vortex in the Lofoten Basin, J. Phys. Oceanogr., 37, p. 2637-2651, https://doi.org/10.1175/2007JPO3694.1.

18. Koszalka, I., J. H. LaCasce, M. K. Andersson, A. Orvik, C. Mauritzen (2011) , Surface circulation in the Nordic seas from clustered drifters, Deep Sea Res. I, 58, p. 468-485, https://doi.org/10.1016/j.dsr.2011.01.007. ; ; EDN: https://elibrary.ru/ONCERT

19. Lebedev, S. A. (2013) , Satellite altimetry in the Earth Sciences, Modern Problems of Remote Sensing of the Earth From Space, 10, no. 3, p. 33-49 (in Russian).

20. McDougall, T. J., D. R. Jackett, F. J. Millero, R. Pawlowicz, P. M. Barker (2012) , A global algorithm for estimating Absolute Salinity, Ocean Sci., 8, p. 1123-1134, https://doi.org/10.5194/os-8-1123-2012. ; ; EDN: https://elibrary.ru/YEUWBD

21. Mork, K. A., O. Skagseth (2010) , A quantitative description of the Norwegian Atlantic Current by combining altimetry and hydrography, Ocean Science, 6, p. 901-911, https://doi.org/10.5194/os-6-901-2010. ; ; EDN: https://elibrary.ru/SPTBOH

22. Poulain, P.-M., A. Warn-Varnas, P. P. Niiler (1996) , Near-surface circulation of the Nordic seas as measured by Largangian drifters, J. Geophys. Res., 101, no. C8, p. 18237-18258, https://doi.org/10.1029/96JC00506.

23. Raj, R. P., L. Chafik, J. E.  Nilsen, T. Eldevik, I. Halo (2015) , The Lofoten Vortex of the Nordic seas, Deep Sea Res. I, 96, p. 1-14, https://doi.org/10.1016/j.dsr.2014.10.011. ; ; EDN: https://elibrary.ru/USNUUN

24. Raj, R., J. Johannessen, T. Eldevik, J. E.  Nilsen, I. Halo (2016) , Quantifying mesoscale eddies in the Lofoten Basin, J. Geophys. Res. Oceans, 121, p. 4503-4521, https://doi.org/10.1002/2016JC011637. ; ; EDN: https://elibrary.ru/WQEPYX

25. Richards, C., F. Straneo (2015) , Observations of Water Mass Transformation and Eddies in the Lofoten Basin of the Nordic Seas, J. Phys. Oceanography, 45, no. 6, p. 1735-1737, https://doi.org/10.1175/JPO-D-14-0238.1. ; ; EDN: https://elibrary.ru/VEWUGV

26. Rossby, T., V. Ozhigin, V. Ivshin, S. Bacon (2009a) , An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten Basin, Deep Sea Res. I, 56, no. 11, p. 1955-1971, https://doi.org/10.1016/j.dsr.2009.07.005. ; ; EDN: https://elibrary.ru/MWZRFN

27. Rossby, T., M. D. Prater, H. S\\oiland (2009b) , Pathways of inflow and dispersion of warm waters in the Nordic seas, J. Geophys. Res., 114, p. C04011, https://doi.org/10.1029/2008JC005073.

28. Skagseth, , A. Slotte, E. K. Stenevik, R. D. M. Nash (2015) , Characteristics of the Norwegian Coastal Current during Years with High Recruitment of Norwegian Spring Spawning Herring (Clupea harengus L.), PLoS ONE, 10, no. 12, p. e0144117, https://doi.org/10.1371/journal.pone.0144117.

29. S\\oiland, H., T. Rossby (2013) , On the structure of the Lofoten Basin Eddy, J. Geophys. Res., 118, p. 4201-4212, https://doi.org/10.1002/jgrc.20301.

30. Tóth, G., G. Házi (2010) , Merging of shielded Gaussian vortices and formation of a tripole at low Reynolds numbers, Physics of Fluids, 22, p. 053101, https://doi.org/10.1063/1.3428539. ; ; EDN: https://elibrary.ru/NSUSFF

31. Volkov, D. L., L.-L. Fu (2008) , The role of vorticity fluxes in the dynamics of the Zapiola Anticyclone, J. Geophys. Res., 113, p. C11015, https://doi.org/10.1029/2008JC004841.

32. Volkov, D. L., T. V. Belonenko, V. R. Foux (2013) , Puzzling over the dynamics of the Lofoten Basin - a sub-Arctic hot spot of ocean variability, Geophys. Res. Lett., 40, no. 4, p. 738-743, https://doi.org/10.1002/grl.50126. ; ; EDN: https://elibrary.ru/RFBUVP

33. Volkov, D. L., A. Kubryakov, R. Lumpkin (2015) , Formation and variability of the Lofoten Basin vortex in a high-resolution ocean model, Deep Sea Res. I, 105, p. 142-157, https://doi.org/10.1016/j.dsr.2015.09.001. ; ; EDN: https://elibrary.ru/VABFTX

34. Yu, L.-S., A. Bosse, I. Fer, K. A. Orvik, E. M. Bruvik, I. Hessevik, K. Kvalsund (2017) , The Lofoten Basin eddy: Three years of evolution as observed by Seagliders, J. Geophys. Res. Oceans, 122, p. 6814-6834, https://doi.org/10.1002/2017JC012982. ; ; EDN: https://elibrary.ru/YJSYGO

35. Zinchenko, V. A., S. M. Gordeeva, Yu. V. Sobko, T. V. Belonenko (2019) , Analysis of Mesoscale eddies in the Lofoten Basin based on satellite altimetry, Fundamental and Applied Hydrophysics, 12, no. 3, p. 46-54.

36. Zhmur, V. V. (2011) , Mesoscale Vortices of the Ocean, 384 pp., GEOS, Moscow (in Russian).

Login or Create
* Forgot password?