POROELASTIC RESPONSE TO RAPID DECARBONATISATION AS A MECHANISM OF THE DIAMONDS FORMATION IN THE MANTLE WEDGE OF KAMCHATKA
Abstract and keywords
Abstract (English):
Various geodynamic mechanisms can lead to the penetration of siliceous carbonates into the mantle wedge. Their thermal decomposition in the "mantle olivine autoclave" can be a mechanism for the formation of diamond erupted in subduction zone of Kamchatka. Using the theory of poroelasticity, we showed that rapid heating of a mixture of sideritic dolomite and silica on 150-200° C in the closed system conditions can temporarily lead to an increase in the fluid pressure by 2-3 GPa. With the initial parameters P=2" role="presentation" style="position: relative;">P=2P=2P = 2 GPa and T=830" role="presentation" style="position: relative;">T=830T=830T = 830° C, the carbonic fluid produced during the reaction would get into the PT stability field of the diamond. The growth of diamond at the fluid decomposition in the PT field of metastable graphite can be enhanced by microparticles of native Ni and Mn formed by the thermal decomposition of gaseous metals carbonyls. The corresponding abundant micro-inclusions of Ni and Mn were found in Kamchatka diamonds.

Keywords:
Poro-elasticity, decarbonatisation, diamond, carbon monoxide, mantle wedge, Kamchatka
Text
Text (PDF): Read Download
References

1. Bakri, Z., A. Zaoui (2011) , Structural and mechanical properties of dolomite rock under high pressure conditions: A first-principles study, Phys. Status Solid, B 248, no. 8, p. 1894-1900, https://doi.org/10.1002/pssb.201046465.

2. Biot, M. A., D. G. Willis (1957) , The elastic coefficients of the theory of consolidation, J. Appl. Mech., 24, p. 594-601.

3. Boulard, E., Y. Liu, A. L. Koh, M. M. Reagan, J. Stodolna, G. Morard, M. Mezouar, W. L. Mao (2016) , Transformations and Decomposition of MnCO3 at Earth's Lower Mantle Conditions, Frontiers Earth Sci., 4, p. 107, https://doi.org/10.3389/feart.2016.00107.

4. Chacko, T., D. R. Cole, J. Horita (2001) , Equilibrium Oxygen, Hydrogen and Carbon Isotope Fractionation Factors Applicable to Geologic Systems, Reviews Mineral. Geochem., 43, no. 1, p. 1-81.

5. Cheng, A. H.-D. (2016) , Poroelasticity, 877 pp., Springer, Switzerland, https://doi.org/10.1007/978-3-319-25202-5 (ISBN 978-3-319-25202-5 (eBook)).

6. Creon, L., et al. (2016) , Highly CO2-supersaturated melts in the Pannonian lithospheric mantle - A transient carbon reservoir?, Lithos, 286-287, p. 519-533, https://doi.org/10.1016/j.lithos.2016.12.009.

7. Davies, J. H. (2013) , Global map of solid Earth surface heat flow, Geochemistry, Geophysics, Geosystems, 14, https://doi.org/10.1002/ ggge.20271.

8. Duan, Z., Z. Zhang (2006) , Equation of state of the H2O, CO2, and H2O-CO2 systems up to 10 GPa and 2573.15 K: Molecular dynamics simulations with ab initio potential surface, Geochim. Cosmochim. Acta, 70, p. 2311-2324.

9. Erlich, E. I., W. D. Hausel (2002) , Diamond Deposits: Origin, Exploration, and History of Discovery, 374 pp., Society for Mining, Metallurgy, and Exploration, CO, USA (www.smenet.org).

10. Fletcher, R. C., E. Merino (2001) , Mineral growth in rocks: Kinetic-rheological models of replacement,vein formation, and syntectonic crystallization, Geochim. Cosmochim. Acta, 65, no. 21, p. 3733-3748.

11. Gordeev, E., G. Karpov, L. Anikin, S. V. Krivovichev, S. K. Filatov, A. V. Antonov, A. A. Ovsyannikov (2014) , Diamonds in lavas of the Tolbachik fissure eruption in Kamchatka, Doklady Earth Sciences (Geochemistry), 454, no. 1, p. 47-49.

12. Gudfinnsson, G. H., D. C. Presnall (2005) , Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3-8 Gpa, J. Petrol., 46, no. 8, p. 1645-1659, https://doi.org/10.1093/petrology/egi029.

13. Howell, D., et al. (2015) , Diamonds in ophiolites: Contamination or a new diamond growth environment?, Earth Planet. Sci. Lett., 430, p. 284-295.

14. Kaminsky, F. V., R. Wirth, L. P. Anikin, M. Luiz, S. Anja (2016) , Carbonado-like diamond from the Avacha active volcano in Kamchatka, Russia, Lithos, 265, p. 222-236.

15. Kang, N., M. W. Schmidt, S. Poli, E. Franzolin, J. A. D. Connolly (2015) , Melting of siderite to 20 GPa and thermodynamic properties of FeCO3-melt, Chem. Geol., 400, p. 4-43.

16. Kelemen, P. B., G. Hirth (2012) , Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation, Earth and Planetary Science Letters, 345-348, p. 81-89.

17. Korsakov, A. ., D. Hutsebaut, K. Theunissen, P. Vandenabeele, A. S. Stepanov (2007) , Raman mapping of coesite inclusions in garnet from the Kokchetav Massif (Northern Kazakhstan), Spectrochim. Acta, Part A 68, p. 1046-1052.

18. Levin, V., S. Droznina, M. Gavrilenko, M. J. Carr, S. Senyukov (2014) , Seismically active subcrustal magma source of the Klyuchevskoy volcano in Kamchatka, Russia, Geology, 42, no. 11, p. 983-986, https://doi.org/10.1130/G35972.1.

19. Li, B., D. R. Neuville (2010) , Elasticity of diopside to 8 GPa and 1073 K and implications for the upper mantle, Phys. Earth Planet. Inter., 183, p. 398-403.

20. Liu, W., J. Kung, B. Li (2005) , Elasticity of San Carlos olivine to 8 GPa and 1073 K, Geophys. Res. Lett., 32, p. L16301, https://doi.org/10.1029/2005GL023453.

21. Luth, R. W. (1995) , Experimental determination of the reaction dolomite + 2 coesite = diopside + 2 CO2 to 6 GPa, Contrib. Mineral. Petrol., 122, p. 152-158.

22. Martin, A. M., T. Hammouda (2011) , Role of iron and reducing conditions on the stability of dolomite + coesite between 4.25 and 6 GPa - a potential mechanism for diamond formation during subduction, Eur. J. Mineral., 23, p. 5-16.

23. McKenzie, D., J. Jackson, K. Priestley (2005) , Thermal structure of oceanic and continental lithosphere, Earth Planet. Sci. Lett., 233, p. 337-349.

24. Nestola, F., M. Prencipe, P. Nimis, N. Sgreva, S. H. Perritt, I. L. Chinn, G. Zaffiro (2018) , Toward a robust elastic geobarometry of kyanite inclusions in eclogitic diamonds, J. Geophys. Res., 123, no. 8, p. 6411-6423, https://doi.org/10.1029/2018JB016012.

25. Nikulin, A., V. Levin, M. Carr, C. Herzberg, M. West (2012) , Evidence for two upper mantle sources driving volcanism in Central Kamchatka, Earth Planet. Sci. Lett., 321-322, p. 14-19.

26. Pabst, W., E. Gregorova (2013) , Elastic properties of silica polymorphs - a review, Ceramics-Silikáty, 57, no. 3, p. 167-184.

27. Portnyagin, M., V. C. Manea (2008) , Mantle temperature control on composition of arc magmas along the Central Kamchatka Depression, Geology, 36, p. 519-522.

28. Seliverstov, N. I. (2007) , Structure of Kamchatka seismofocal zone, Kraunz Bullet. Earth Sci., 9, no. 1, p. 10-26 (in Russian).

29. Silaev, I., G. A. Karpov, V. I. Rakin, L. P. Anikin, E. A. Vasiliev, V. N. Filippov, V. A. Petrovskiy (2015) , Diamonds in the Products of Tolbachik Fissure Eruption 2012-2013, Kamchatka, Herald of Perm University, 1, no. 26, p. 6-27 (in Russian).

30. Simakin, A. G. (2014) , Numerical modelling of the late stage of subduction zone transference after an accretion event, Terra Nova, 26, no. 1, p. 22-28.

31. Simakin, A., T. Salova, V. Devyatova, M. Zelensky (2015) , Reduced carbonic fluid and possible nature of high K magmas of Tolbachik, J. Volcanol. Geoth. Res., 307, p. 210-221.

32. Simakin, A., T. Salova, R. Gabitov, S. I. Isaenko (2016) , Dry CO2-CO fluid as an important potential Deep Earth solvent, Geofluids, 16, p. 1043-1067.

33. Simakin, A. G., V. N. Devyatova, T. P. Salova, M. E. Zelensky (2018) , Properties of Reduced Carbon Dioxide Fluid: Evidence from Experimental and Thermodynamic Modeling, Doklady Earth Sciences, 478, no. 1, p. 70-73.

34. Smith, E. M., M. G. Kopylova, M. L. Frezzotti, V. P. Afanasiev (2015) , Fluid inclusions in Ebelyakh diamonds: Evidence of CO2 liberation in eclogite and the effect of H2O on diamond habit, Lithos, 216-217, p. 106-117.

35. Swamy, V., S. K. Saxena, B. Sundman, J. Zhang (1994) , A thermodynamic assessment of silica phase diagram, J. Geophys. Res., 99, p. 11,787-11,794.

36. Tatsumi, Y., H. Shukuno, K. Tani, N. Takahashi, S. Kodaira, T. Kogiso (2008) , Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Role of crust-mantle transformation and the transparent Moho in arc crust evolution, J. Geophys. Res., 113, no. B2, p. B02203, https://doi.org/10.1029/2007JB005121.

Login or Create
* Forgot password?