ESTIMATION OF IN-SITU HORIZONTAL STRESSES USING THE LINEAR POROELASTIC MODEL AND MINIFRAC TEST RESULTS IN TECTONICALLY ACTIVE AREA
Abstract and keywords
Abstract (English):
Accurate estimation of in situ stresses of a subsurface formation is important to get a basic knowledge of formation structure and position of anomalies, groundwater flows, performing fracturing operations, drilling operations, oil and/or gas production stimulation, wellbore stability analysis, and coupled geomechanics-reservoir simulation in petroleum engineering. In this paper, at first a new method for estimation of minimum and maximum horizontal stresses in tectonically active area based on the modification of linear poroelastic model and minifrac test results is presented. The rock mechanical properties used in poroelastic model are determinded using the artificial neural networks. Then, this method is applied to field data in order to verify the applicability of the modified linear poroelastic model. The results indicated that the agreement between the results of minifrac test and modified linear poroelastic model is satisfactory. Furthermore, application of artificial neural networks in this methodology increases the accuracy of linear poroelastic model for estimation of horizontal stresses.

Keywords:
Minifrac tests, linear poroelastic model, horizontal stress, tectonically active area
Text
Text (PDF): Read Download
References

1. Aadnoy, B., Loooyeh, R. Petroleum Rock Mechanics: Drilling Operation and Well design, First edition - New York: Elsevier., 2011.

2. Abdideh, M., Fathabadi, M. R. Analysis of stress field and determination of safe mud window, // Journal of Petroleum Exploration and Production Technology, 2013. - v. 3 - p. 105.

3. Alipour Tabrizy, V., Mirzaahmadian, Y. Investigation of Sand Production Onset: A New Approach Based on Petrophysical Logs. SPE 150529 // Proceedings of the SPE Annual Technical Conference and Exhibition. 15-17 February, Louisiana - Louisiana: SPE., 2012. - p. 334.

4. Al-Qahtani, M., Rahim, Z. A Mathematical Algorithm for Modeling Geomechanical Rock Properties of the Khuff and Pre-Khuff Reservoirs in Ghawar Field. SPE 68194 // Proceedings of the SPE Annual Technical Conference and Exhibition 17-20 March, Bahrain - Bahrain: SPE., 2001. - p. 123.

5. Blanton, T., Olson, J. Stress Magnitudes from Logs: Effects of Tectonic Strains and Temperature, // SPE Reservoir Evalution and Engineering, 1999. - v. 5 - p. 62.

6. Bourgoyne, A. T., Chenevert, M. E., Millheim, K., Young, F. Applied Drilling Engineering. Textbook Series - Richardson, Texas: SPE., 1991. - 212-223 pp.

7. Brudy, M., et al. Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength, // J. Geophys. Res., 1997. - v. 102 - no. 18 - p. 1453.

8. Crain, E. Crain's Petrophysical Handbook - Alberta: Mindware., 2010.

9. Dehghan, S., Sattari, Gh., Chehreh Chelgany, S., Aliabadi, M. A. Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks, // Mining Science and Technology, 2010. - v. 20 - p. 41.

10. Gronseth, J. M., Kry, P. R. Instantaneous shut-in pressure and its relationship to the minimum in-situ stress // Proc. Hydraulic Fracturing Stress Measurements, Monterey - Washington, DC: National Academy Press., 1983. - p. 55.

11. Haimson, B., Fairhurst, C. In situ stress determination at great depth by means of hydraulic fracturing // 11th Symposium on Rock Mechanics - W. Somerton: Society of Mining Engineers of AIME., 1970. - p. 559.

12. Haimson, B. C., Cornet, F. H. ISRM suggested methods for rock stress estimation, part 3: Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF), // International Journal of Rock Mechanics and Mining Science, 2003. - v. 40 - p. 1011.

13. Hareland, G., Harikrishnan, R. Comparison and Verification of Electric-Log-Derived Rock Stresses and Rock Stresses Determined From the Mohr Failure Envelope, // Journal SPE Formation Evaluation, 1996. - v. 6 - no. 2 - p. 219.

14. Hassanzadeh, G., Kobraei, M. , Ahanjan, A. , Tirtashi, R. , Rashidi, M., Khaleghi, M. Petroleum System Analysis Using Geochemical Studies, Isotope and 1D Basin Modeling in Hendijan Oil Field, SW Iran IPTC 14797 // Proceedings of the International Petroleum Technology Conference, Bangkok, Thailand, 7-9 February - Bangkok, Thailand: PTC., 2011. - p. 85.

15. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfe\ss, D., Müller, B. The World Stress Map based on the database release 2008 - Paris: Commission for the Geological Map of the World., 2009.

16. Hickman, S. H., Zoback, M. D. The interpretation of hydraulic fracturing pressuretime data for in situ stress determination // Hydraulic Fracturing Measurements - Washington, DC: National Academy Press., 1983. - p. 55.

17. Higgins, S., Goodwin, S., Donald, A., Bratton, T., Tracy, G. Anisotropic Stress Models Improve Completion Design in Baxter Shale // Proceedings of the SPE Annual Technical Conference and Exhibition - Denver, Colorado: SPE., 2008. - p. 1.

18. Hubbert, M. K., Willis, D. G. Mechanics of hydraulic fracturing, // Pet. Trans. AIME, 1957. - v. 210 - p. 153.

19. Keshavarzi, R., Jalili, S. Building a mechanical earth model and its application in a geomechanical analysis of hydraulic fracture behaviour in naturally fractured reservoirs, // European Journal of Environmental and Civil Engineering, 2014. - v. 18 - no. 3 - p. 336.

20. Khazaei, J., Shahbazi, F. Modelling physical and physiological damage to wheat seeds under impact loading using artificial neural networks // Proc. International Conference on Agrophysics, Lublin, February 17-19, 2005 - Bangkok: PTC., 2005. - p. 11.

21. Li, Y., Bridgwater, J. Prediction of extrusion pressure using an artificial neural network, // Powder Technology, 2000. - v. 2000 - no. 108 - p. 11.

22. Moazzeni, A., Nabaei, M., Shahbazi, Kh., Shadravan, A. Mechanical Earth Modeling Improves Drilling Efficiency and Reduces Non-Productive Time (NPT), SPE 131718 // Prepared for presentation at the SPE Deep Gas Conference and Exhibition held in Manama, Bahrain, 2521 January - Bahrain: SPE., 2011. - p. 99.

23. Mohammadi, M., Kamali, M., Kadkhodaie, A., Kazemzadeh, E. Estimation of geomechanical parameters from petrophysical data using Neuro-fuzzy systems // 15th Geophysical Conference, Iran, 5-8 Jul. 2012 - Iran: GCI., 2012. - p. 212.

24. Motiei, H. Petroleum Geology of Zagros-1 - Iran: Geological Survey of Iran., 1995. - 589-600 pp.

25. Nabaei, M., Shahbazi, K., Shadravan, A., Moazzeni, M. Artificial neural network modelling enhances shear wave transit time. SPE 12158 // Proceedings of the SPE Annual Technical Conference and Exhibition, 16-20 November, Kish Island - Kish Island: SPE., 2009. - p. 170.

26. Nauroy, J. Geomechanics Applied to the Petroleum Industry // IFP Energies Nouvelles - Paris: Elsevier., 2011. - p. 135.

27. Perchikolaee, S. R., et al. Building a Precise Mechanical Earth Model and its Application in Drilling Operation Optimization: A Case Study of Asmari Formation in Mansuri Oil Field. SPE 132204 // Proceedings of the SPE Annual Technical Conference and Exhibition, 8-10 June 2010 - Bahrain: SPE., 2010. - p. 448.

28. Raaen, A. M., Horsrud, P., Kjolt, H., and, D. Improved routine estimation of the minimum horizontal stress component from extended leak-off tests, // International Journal of Rock Mechanics and Mining Science, 2006. - v. 43 - p. 37.

29. Rabbani, A. R., Bagheri, A., Tirtashi, R. Hydrocarbon Source Rock Evaluation of the Super Giant Ahwaz Oil Field, SW Iran Australian, // Journal of Basic and Applied Sciences, 2010. - v. 4 - no. 5 - p. 673.

30. Reynolds, D., Mildren, S., Hillis, R., Meyer, J. Constraining stress magnitudes using petroleum exploration data in the Cooper-Eromanga Basins, Australia, // J. Tectonophysics, 2006. - v. 415 - p. 123.

31. Sabzehparvar, M., Nabi-Bidhendi, M. Estimation of Elastic Parameters in Oil Reservoir with Using Well log Information and Neural network, // Journal of Earth, 2008. - v. 1 - p. 23.

32. Song, L. Measurement of minimum horizontal stress from logging and drilling data in unconventional oil and gas - Calgary: University of Calgary., 2012.

33. Teichrob, R., Kustamsi, A., Hareland, G., Odiegwu, U. Estimating In Situ Stress Magnitudes and Orientations in an Albertan Field in Western Canada, ARMA 10-224 // Proceedings of the 44th US Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium, Salt Lake City, UT June 27-30 2010 - Thailand: CRMS., 2010. - p. 210.

34. Trippi, R. R., Turban, E. Neural Networks in Finance and Investing-Using Artificial Intelligence to Improve Real-World Performance - New York: McGraw-Hill., 1996.

35. Wang, H. F. Theory of Linear Poroelasticity - Princeton: Princeton University Press., 2000.

36. Warpinski, N. R., Smith, M. B. Rock mechanics and fracture geometry in recent advances in hydraulic fracturing, // Journal of Society of Petroleum Engineers, Gidley, J. L. (Ed.) Recent Advances in Hydraulic Fracturing, 1989. - v. 12 - p. 66.

37. Zhang, J., Roegiers, J. Discussion on Integrating borehole-breakout dimensions, strength criteria, and leak-off test results, to constrain the state of stress across the Chelungpu Fault, Taiwan, // J. Tectonophysics, 2010. - v. 492 - p. 295.

38. Zoback, M., et al. In situ stress measurements in deep boreholes using hydraulic fracturing, wellbore breakouts and Stonely wave polarization // Rock Stress and Rock Stress Measurements conference, Jul. 22-25, 1987 - Stockholm, Sweden: ISRM., 1987. - p. 33.

39. Zoback, M. Reservoir Geomechanics - Cambridge: Cambridge University Press., 2007.

Login or Create
* Forgot password?