THERMAL REGIME AND HEAT TRANSFER DURING THE EVOLUTION OF CONTINENTAL COLLISION STRUCTURES
Abstract and keywords
Abstract (English):
The study of collision structures is conducted based on the complex model of the thermal and mechanical evolution of overthrusting process for the rheologically layered lithosphere, which includes brittle upper crust and the lower crust and lithospheric upper mantle with different effective viscosity values. Finite element models with Lagrangian approach were used for the problem simulation to study the real deformation and thermal history of orogen. Horizontal shortening leads to the upper crust overthrusting along the fault zone, additional loading to the lower layers which is redistributed in the process of uplift and erosion. This work concentrates on the thermal evolution of collision zones that formed due to upper crust overthrusting movement accompanied by ductile flows at the levels of the lower crust and the upper mantle. The major controls on thermal evolution of the regions with the thickened continental crust are the radiogenic heat supply within the crust, the thermal conductivity of the layers (including its anisotropy in the upper crust) and the rate and time scale of erosion. Calculations of different radiogenic heat content and thermal conductivity in the upper crust lead to the conclusions concerning the time and level of granite melt formation. The horizon of temperatures higher than wet granite solidus appears at the level of 30--40~km, moving upward to the depth 15--20~km at postcollisional stage. The range of maximum temperatures is presented based on the numerical modeling with reliable set of thermal parameters.

Keywords:
Collision, overthrusting, heat flow value, granite melt, radiogenic heat sources, thermal conductivity
Text
Text (PDF): Read Download
References

1. Ashwal, L. D., Morgan, P., Kelley, S. A., Percival, J. A. Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements, // Earth Planet. Sci. Lett., 1987. - v. 85 - p. 439.

2. Beaumont, C., Munos, J. A., Hamilton, J., Fullsack, P. Factorscontrolling the Alpine evolution of Central Pyrenees inferred from a comparison of observations and geodynamical models, // J. Geophy. Res., 2000. - v. 105 - no. B4 - p. 8121.

3. Brewer, J. Thermal effects of thrust faulting, // Earth Planet. Sci. Lett., 1981. - v. 56 - p. 233.

4. Burg, J. P., Gerya, T. V. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps, // J. Metamorp. Geol., 2005. - v. 23 - p. 75.

5. Burov, E., Jolivet, L., Le Pourhiet, L., Poliakov, A. A thermomechanical model of exhumation of high pressure (HP) and ultrahigh pressure (UHP) metamorphic rocks in Alpinotype collision belts, // Tectonophysics, 2001. - v. 342 - p. 113.

6. Chamberlain, C. P., et al. Influence of deformation on pressure-temperature paths of metamorphism, // Geology, 1987. - v. 15 - p. 42.

7. Clauser, C., Gieses, P., Huenges, E., et al. The thermal regime of the crystalline continental crust: implications from the KTB, // J. Geophys. Res., 1997. - v. 102 - p. 18,417.

8. England, P., Thompson, A. B. Pressure-temperature-time paths of regional metamorphism. Part I: Heat transfer during the evolution of regions of thickened continental crust, // J. Petrology, 1984. - v. 25 - p. 894.

9. Faccenda, M., Gerya, T. V., Chakraborty, S. Styles of post-subduction collisional orogeny: Influence of convergence velocity, crustal rheology and radiogenic heat production, // Lithos, 2008. - v. 103 - p. 257.

10. Fernandez, R. D., et al. Tectonic evolution of Variscan Iberia: Gondwana-Laurussia collision revisited, // Earth-Science Reviews, 2016. - v. 162 - p. 269.

11. Fountain, D. M., Salisbury, M. H., Furlong, K. P. Heat production and thermal conductivity of rocks from the Pikwitonei-Sashigo continental cross section, central Manitoba: implications for the thermal structure of Archean crust, // Can. J. Earth Sci., 1987. - v. 24 - p. 1583.

12. Gerdes, A., Worner, G., Henk, A. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith, // J. Geol. Soc., London, 2000. - v. 157 - p. 577.

13. Grachev, A. F. Anisotropy of elastic properties and thermal conductivity of the upper mantle - a case study of xenoliths shape: Evidence from xenoliths in basalts in North Eurasia, // Russ. J. Earth. Sci., 2016. - v. 16 - p. 577.

14. He, L., Hu, S., Yung, W., et al. Heat flow study at the Chinese Scientific Drilling site: Borehole temperature, thermal conductivity, and radiogenic heat production, // J. Geophys. Res., 2008. - v. 113 - p. 577.

15. Jammes, S., Huismans, R. S. Structural styles of mountain building: Controls of lithospheric rheologic stratification and extensional inheritance, // J. Geophys. Res., 2012. - v. 117 - p. 577.

16. Jaupart, C., Mareschal, J.-C. The thermal structure and thickness of continental roots, // Lithos, 1999. - v. 48 - p. 93.

17. Jaupart, C., Mareschal, J.-C. Constraints on crustal heat flow data // Treatise on Geochemistry, 3: The Crust, R. L. Rudnick (ed.) - Amsterdam: Elsevier Sci. Pub.., 2004. - p. 65.

18. Jaupart, C., Mareschal, J.-C. Heat Generation and Transport in the Earth - New York: Cambridge Univ. Press., 2011. - 464 pp.

19. Jaupart, C., Provost, A. Heat focusing, granite genesis and inverted metamorphic gradients in continental collision zones, // Earth Planet. Sci. Lett., 1985. - v. 73 - p. 385.

20. Majorowicz, J. A. Heat flow-heat production relationship not found: what drives heat flow variability of the Western Canadian foreland basin?, // Int. J. Earth. Sci. (Geol Rundsch), 2016. - p. 385.

21. Mareschal, J.-C. Thermal regime and post-orogenic extension in collision belts, // Tectonophysics, 1994. - v. 238 - p. 471.

22. Nicolaysen, L. O., Hart, R. J., Gale, N. H. The Vredefort radioelement profile extended to supracrustal strata at Carletonville, with implications for continental heat flow, // J. Geophys. Res., 1981. - v. 86 - p. 10,653.

23. Nyblade, A. A., Pollack, H. N. A global analysis of heat flow from Precambrian terrains: implications for the thermal structure of Archean and Proterozoic lithosphere, // J. Geophys. Res., 1993. - v. 98 - p. 12,207.

24. Parphenuk, O. I. Thermal regime of collisional overthrust structures, // Izvestiya, Physics of the Solid Earth, 2005. - v. 41 - no. 3 - p. 238.

25. Parphenuk, O. I. Study of thermal conditions of granite melt formation in collision areas (based on numerical simulation), // Monitoring. Science and Technology, 2012. - no. 3(12) - p. 11.

26. Parphenuk, O. I. Analysis of the collisional uplifts erosion influence on the overthrusted structures and the process of deep crustal rocks exhumation (numerical modeling), // Bulletin of Kamchatka regional association Educational-Scientific Center, Earth Sciences, 2014. - no. 1(23) - p. 107.

27. Parphenuk, O. I. Uplifts formation features in continental collision structures (evolution modeling), // Russ. J. Earth. Sci., 2015. - v. 15 - p. 107.

28. Parphenuk, O. I., Mareschal, J.-C. Numerical modeling of the thermomechanical evolution of the Kapuskasing structural zone, Superior Province, Canadian Shield, // Izvestiya, Physics of the Solid Earth, 1998. - v. 34 - no. 10 - p. 805.

29. Parphenuk, O. I., Dechoux, V., Mareschal, J.-C. Finite-element models of evolution for the Kapuskasing structural zone, // Can. J. Earth Sci., 1994. - v. 31 - p. 1227.

30. Perchuk, L. L. Thermodynamic Regime of Deep Petrogenesis - Moscow: Nauka., 1973. - 318 pp.

31. Percival, J. A. A field guide through the Kapuskasing uplift, a cross section through the Archean Superior Province, Exposed Cross-Sections of the Continental Crust, // NATO ASI Ser., 1990. - v. 317 - p. 227.

32. Perry, H. K. C., Mareschal, J.-C., Jaupart, C. Variations of strength and localized deformation in cratons: The 1.9 Ga Kapuskasing uplift, Superior Province, Canada, // Earth Planet. Sci. Lett., 2006. - v. 249 - p. 216.

33. Popov, Yu. A., Romushkevich, R. A., Micklashevsky, D. E., et al. New results of geothermal and petrothermal study of scientific continental boreholes sections // The Earth's Thermal Field and Related Research Methods - Moscow: RSGPU Publ.., 2008. - p. 208.

34. Reddy, J. N. An Introduction to the Finite-Element Method - New York: McGrow-Hill., 1984. - 459 pp.

35. Robertson, E. C. Thermal Conductivities of Rocks, Open-File Report - U.S: U.S. Geol. Surv.., 1979. - 79-356 pp.

36. Rosen, O. M. Metamorphic effects of tectonic movements at the low crustal level: Proterozoic collision zones and terranes of the Anabar Shield, // Geotectonics, 1995. - v. 29 - no. 29 - p. 91.

37. Rosen, O. M., Fedorovsky, V. S. Collisional Granitoids and the Earth Crust Layering - Moscow: Nauchnyi Mir., 2001. - 188 pp.

38. The Kola Superdeep, Scientific Results and Investigations - Moscow: MFTeckhnoneftegas., 1998. - 260 pp.

39. Turcotte, D., Shubert, J. Geodynamics, Vol. I - Moscow: Mir., 1985. - 376 pp.

40. Willett, S., Beaumont, C., Fullsack, P. Mechanical model for the tectonics of doubly vergent compressional orogens, // Geology, 1993. - v. 21 - p. 371.

Login or Create
* Forgot password?