ULF WAVE POWER INDEX FOR SPACE WEATHER AND GEOPHYSICAL APPLICATIONS: A REVIEW
Abstract and keywords
Abstract (English):
A ULF wave index, characterizing the level of the geomagnetic field variability in the frequency range 2--7~mHz, has been suggested to the space physics and geophysical community. This global wave index is produced from all available arrays of magnetometers and isolated stations in the Northern hemisphere. A similar ULF wave index is calculated using magnetometer data from geostationary (GOES) and interplanetary (Wind, ACE) satellites. In this review we demonstrate that a wide range of space physics studies, such as the solar wind-ionosphere coupling, wave energy transport, substorm physics, relativistic electron energization, ring current formation, electrodynamics of the ionosphere and magnetosphere, search for electromagnetic precursors of earthquakes, etc., has benefited from the introduction of the provisional ULF wave index. Possible ways of the ULF index advancement and development are discussed. The permanently updating ULF-index database is freely available via the website \href{http://ulf.gcras.ru/}{ulf.gcras.ru} for all interested researchers for further validation and statistical studies.

Keywords:
ULF waves, space weather, substorms, magnetic storms, earthquake precursors, geomagnetically induced currents, discrete mathematical analysis
Text
Text (PDF): Read Download
References

1. Agayan, S., Bogoutdinov, S., Soloviev, A., Sidorov, R. The study of time series using the DMA methods and geophysical applications, // Data Science Journal, 2016. - v. 15 - no. 16 - p. 1.

2. Baker, D. N., Pulkkinen, T., Li, X., Kanekal, S. G., Blake, J. B., Selesnick, R. S., Reeves, G. D., Spence, H. E., Rostoker, G. Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP, // J. Geophys. Res., 1998. - v. 103 - p. 17279.

3. Bogoutdinov, Sh. R., et al. Recognition of disturbances with specified morphology in time series. Part 1: Spikes on magnetograms of the worldwide INTERMAGNET network, // Physics of the Solid Earth, 2010. - v. 46 - p. 1004.

4. Borovsky, J. E., Funsten, H. O. The MHD turbulence in the Earth's plasma sheet: dynamics, dissipation, and driving, // J. Geophys. Res., 2003. - v. 108 - p. 1004.

5. Borovsky, J. E., Denton, M. H. Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind-driven magnetosphere, // J. Geophys. Res., 2014. - v. 119 - p. 4307.

6. Borovsky, J. E., Elphic, R. C., Funsten, H. O., Thomsen, M. F. The Earth's plasma sheet as a laboratory for flow turbulence in high-$\beta$ MHD, // J. Plasma Phys., 1997. - v. 57 - p. 1.

7. Currie, J. L., Waters, C. L. On the use of geomagnetic indices and ULF waves for earthquake precursor signatures, // J. Geophys. Res., 2014. - v. 119 - p. 992.

8. Elkington, S. R., Hudson, M. K., Chan, A. A. Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc5 ULF oscillations, // Geophys. Res. Lett., 1999. - v. 26 - p. 3273.

9. Goertz, C. K., Smith, R. A. The thermal catastrophe model of substorms, // J. Geophys. Res., 1989. - v. 94 - p. 6581.

10. Gvishiani, A., Lukianova, R., Soloviev, A., Khokhlov, A. Survey of geomagnetic observations made in the northern sector of Russia and new methods for analyzing them, // Surveys in Geophysics, 2014. - v. 35 - p. 1123.

11. Gvishiani, A., Soloviev, A., Krasnoperov, R., Lukianova, R. Automated hardware and software system for monitoring the Earth's magnetic environment, // Data Science Journal, 2016. - v. 15 - p. 1123.

12. Hattori, K. ULF geomagnetic changes associated with large earthquakes, // Terr. Atmos. Ocean Sci., 2004. - v. 15 - p. 329.

13. Heilig, B., Lotz, S., Vero, J., Sutcliffe, P., Reda, J., Pajunpaa, K., Raita, T. Empirically modeled Pc3 activity based on solar wind parameters, // Ann. Geophys., 2010. - v. 28 - p. 1703.

14. Hudson, M. K., Elkington, S. R., Lyon, J. G., Goodrich, C. C. Increase in relativistic electron flux in the inner magnetosphere: ULF wave mode structure, // Adv. Space Res., 2000. - v. 25 - p. 2327.

15. Kamide, Y. Interplanetary and magnetospheric electric fields during geomagnetic storms: What is more important, steady-state fields or fluctuating fields?, // J. Atmosph. Solar-Terrestrial Phys., 2001. - v. 63 - p. 413.

16. Kim, H.-J., Lyons, L. R., Zou, S., Boudouridis, A., Lee, D.-Y., Heinselman, C., McCready, M. Evidence that solar wind fluctuations substantially affect the strength of dayside ionospheric convection, // J. Geophys. Res., 2009. - v. 114 - p. 413.

17. Kim, H. J., Lyons, L., Boudouridis, A., Pilipenko, V., Ridley, A. J., Weygand, J. M. Statistical study of the effect of ULF fluctuations in the IMF on the cross polar cap potential drop for northward IMF, // J. Geophys. Res., 2011. - v. 116 - p. 413.

18. Kozyreva, O. V., Kleimenova, N. G. Estimate of the dayside geomagnetic wave activity during magnetic storms with the use of new ULF index, // Geomag. Aeron., 2008. - v. 48 - p. 511.

19. Kozyreva, O. V., Kleimenova, N. G. Variations of ULF-index of geomagnetic pulsations during strong magnetic storms, // Geomag. Aeron., 2009. - v. 49 - p. 446.

20. Kozyreva, O. V., Kleimenova, N. G. Variations of the ULF-index of dayside geomagnetic pulsations during recurrent magnetic storms, // Geomag. Aeron., 2010. - v. 50 - p. 799.

21. Kozyreva, O., Pilipenko, V., Engebretson, M. J., Yumoto, K., Watermann, J., Romanova, N. In search of a new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons, // Planetary Space Science, 2007. - v. 55 - p. 755.

22. Lanzerotti, L. J. Space weather effects on technologies // Space Weather (Song et al., eds.) - Washington, D.C: AGU., 2001. - p. 11.

23. Li, X., Temerin, M., Baker, D. N., Reeves, G. D., Larson, D. Quantitative prediction of radiation belt electrons at geosynchronous orbit based solar wind measurements, // Geophys. Res. Lett., 2001. - v. 28 - p. 1887.

24. Liu, W. W., Rostoker, G., Baker, D. N. Internal acceleration of relativistic electrons by large-amplitude ULF pulsations, // J. Geophys. Res., 1999. - v. 104 - p. 17391.

25. Lyons, L. R., et al. Evidence that solar wind fluctuations substantially affect global convection and substorm occurrence, // J. Geophys. Res., 2009. - v. 114 - p. 17391.

26. Mann, I. R., O'Brien, T. P., Milling, D. K. Correlations between ULF wave power, solar wind speed, and relativistic electron flux in the magnetosphere: Solar cycle dependence, // J. Atmosph. Solar-Terr. Physics, 2004. - v. 66 - p. 187.

27. Mathie, R. A., Mann, I. R. On the solar wind control of Pc5 ULF pulsation power at mid-latitudes: Implications for MeV electron acceleration in the outer radiation belt, // J. Geophys. Res., 2001. - v. 106 - p. 29783.

28. McPherron, R. L. The role of substorms in the generation of magnetic storms // Magnetic Storms (Tsurutani et al., eds.) - Washington D.C: AGU., 1997. - p. 29783.

29. Molchanov, O. A., Hayakawa, M. Seismo Electromagnetics and Related Phenomena: History and Latest Results - Tokyo: TERRAPUB., 2008. - 189 pp.

30. O'Brien, T. P., McPherron, R. L., Sornette, D., Reeves, G. D., Friedel, R., Singer, H. J. Which magnetic storms produce relativistic electrons at geosynchronous orbit?, // J. Geophys. Res., 2001. - v. 106 - p. 15533.

31. Pilipenko, V. A. ULF waves on the ground and in space, // J. Atmospheric Terrestrial Physics, 1990. - v. 52 - p. 1193.

32. Pilipenko, V., Kozyreva, O., Engebretson, M., Hughes, W. J., Solovyev, S., Yumoto, K. Coupling between substorms and ULF disturbances in the dayside cusp // Proc. of the International Conference ``Substorms-4'' - Boston: Kluwer Academic Publishers., 1998. - p. 573.

33. Pilipenko, V., Romanova, N., Simms, L. ULF wave power index for space weather applications // COST-724 Final Report ``Developing the scientific basis for monitoring, modeling and predicting space weather'' - Brussels: ESA., 2008. - p. 279.

34. Pilipenko, V., Yagova, N., Romanova, N., Allen, J. Statistical relationships between the satellite anomalies at geostationary orbits and high-energy particles, // Advances in Space Research, 2006. - v. 37 - p. 1192.

35. Pokhotelov, O. A., Pilipenko, V. A., Parrot, M. Strong atmospheric disturbances as a possible origin of inner zone particle diffusion, // Annales Geophysicae, 1999. - v. 17 - p. 526.

36. Posch, J. L., Engebretson, M. J., Pilipenko, V. A., Hughes, W. J., Russell, C. T., Lanzerotti, L. J. Characterizing the long-period ULF response to magnetic storms, // J. Geophys. Res., 2003. - v. 108 - p. 526.

37. Potapov, A. S., Tsegmed, B., Ryzhakova, L. V. Solar cycle variation of ``killer'' electrons at geosynchronous orbit and electron flux correlation with the solar wind parameters and ULF waves intensity, // Acta Astronautica, 2014. - v. 93 - p. 55.

38. Reeves, G. D. Relativistic electrons and magnetic storms: 1992-1995, // Geophys. Res. Lett., 1998. - v. 25 - p. 1817.

39. Romanova, N., Pilipenko, V. ULF wave indices to characterize the solar wind - magnetosphere interaction and relativistic electron dynamics, // Acta Geophysica, 2008. - v. 57 - p. 158.

40. Romanova, N., Pilipenko, V., Crosby, N., Khabarova, O. ULF wave index and its possible applications in space physics, // Bulgarian Journal of Physics, 2007. - v. 34 - p. 136.

41. Rostoker, G., Skopke, S., Baker, D. N. Relativistic electrons in the magnetosphere, // Geophys. Res. Lett., 1998. - v. 25 - p. 3701.

42. Samson, J. C., Wallis, D. D., Hughes, T. J., Creutzberg, F., Ruohoniemi, J. M., Greenwald, R. A. Substorm intensifications and field line resonances in the nightside magnetosphere, // J. Geophys. Res., 1992. - v. 97 - p. 8495.

43. Shprits, Y. Y., et al. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport, // J. Atmospheric and Solar-Terrestrial Physics, 2008a. - v. 70 - p. 1679.

44. Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., Elkington, S. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss, // J. Atmospheric and Solar-Terrestrial Physics, 2008b. - v. 70 - p. 1694.

45. Sidorov, R. V., Soloviev, A. A., Bogoutdinov, Sh. R. Application of the SP algorithm to the INTERMAGNET magnetograms of the disturbed geomagnetic field, // Physics of the Solid Earth, 2012. - v. 48 - p. 410.

46. Simms, L. E., Pilipenko, V. A., Engebretson, M. J. Determining the key drivers of long-period magnetospheric ULF waves, // J. Geophys. Res., 2010. - v. 115 - p. 410.

47. Simms, L. E., Pilipenko, V. A., Engebretson, M. J., Reeves, G. D., Smith, A. J., Clilverd, M. Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis, // J. Geophys. Res., 2014. - v. 119 - p. 7297.

48. Simms, L. E., Engebretson, M. J., Smith, A. J., Clilverd, M., Pilipenko, V., Reeves, G. D. Analysis of the effectiveness of ground-based VLF wave observations for predicting or nowcasting relativistic electron flux at geostationary orbit, // J. Geophys. Res., 2015. - v. 120 - p. 2052.

49. Simms, L. E., Engebretson, M. J., Pilipenko, V. A., Reeves, G. D., Clilverd, M. A. Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis, // J. Geophys. Res., 2016. - v. 121 - p. 3181.

50. Soloviev, A. A., et al. Detection of hardware failures at INTERMAGNET observatories: application of artificial intelligence techniques to geomagnetic records study, // Russ. J. Earth Sci., 2009. - v. 11 - p. 3181.

51. Soloviev, A. A., et al. Recognition of disturbances with specified morphology in time series: Part 2. Spikes on 1-s magnetograms, // Physics of the Solid Earth, 2012a. - v. 48 - p. 395.

52. Soloviev, A., et al. Automated recognition of spikes in 1 Hz data recorded at the Easter Island magnetic observatory, // Earth Planets Space, 2012b. - v. 64 - p. 743.

53. Soloviev, A., Bogoutdinov, S., Gvishiani, A., Kulchinskiy, R., Zlotnicki, J. Mathematical tools for geomagnetic data monitoring and the INTERMAGNET Russian segment, // Data Science Journal, 2013. - v. 12 - p. 114.

54. Soloviev, A., Agayan, S., Bogoutdinov, S. Estimation of geomagnetic activity using measure of anomalousness, // Annals of Geophysics, 2016. - v. 59 - p. 114.

55. Surkov, V., Pilipenko, V. The physics of pre-seismic electromagnetic ULF signals // Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, edited by M. Hayakawa - Tokyo: TERRAPUB., 1999. - p. 357.

56. Tverskoy, B. A. Dynamics of the Radiation Belts of the Earth - Moscow: Nauka., 1968. - 194 pp.

57. Yagova, N. V., Pilipenko, V. A., Rodger, A. S., Papitashvili, V. O., Watermann, J. F. Long period ULF activity at the polar cap preceding substorm // Proc. 5th International Conference on Substorms, St. Petersburg - Noordwijk, the Netherlands: ESA Publications Division., 2000. - p. 603.

58. Zelinskiy, N. R., et al. Algorithm for recognizing Pc3 geomagnetic pulsations in 1-s data from INTERMAGNET equatorial observatories, // Physics of the Solid Earth, 2014. - v. 50 - p. 240.

Login or Create
* Forgot password?