METHODOLOGICAL ASPECTS OF HEAT BALANCE COMPONENTS ESTIMATION ON MOUNTAIN GLACIERS
Abstract and keywords
Abstract (English):
In this paper we present estimations of heat balance components (primarily, turbulent heat transfer) on the mountain glacier Djankuat calculated using different methods. The estimations are compared with the observations of turbulent fluctuations of wind speed and air temperature derived from sonic anemometer, as well as the automatic meteorological, actinometric and glaciological measurements in the ablation zone of the glacier. It is shown that the method of aerodynamic formulas is the most adequate method for estimating turbulent fluxes over mountain glacier. An attempt was also made to physically interpret a systematic overestimation of the calculated ablation.

Keywords:
Mountain meteorology, glacio-climatology, heat balance of mountain glaciers, turbulent heat fluxes
Text
Publication text (PDF): Read Download
References

1. Hock, R., Holmgren, B. A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden, // Journal of Glaciology, 2005. - v. 51 - p. 25.

2. Kaimal, J. C., Gaynor, J. E. Another look at sonic thermometer, // Boundary-Layer Meteorology, 1991. - v. 56 - p. 401.

3. Kislov, A. V. Climate in Past, Present and Future - Moscow: Nauka-Interperiodica., 2001. - 275 pp.

4. Kotlyakov, V. M. World of Snow and Ice - Moscow: Nauka., 1994. - 286 pp.

5. Krenke, A. N., Hodakov, V. G. On the connection between surface melting of glaciers and air temperature, // MGI, 1966. - v. 12 - p. 153.

6. Kuzmin, P. P. The Process of Snow Melting - Leningrad: Gidrometizdat., 1961. - 346 pp.

7. MacDougall, A. H., Flowers, G. E. Spatial and temporal transferability of a distributed energy-balance glacier melt-model, // J. Clim., 2011. - v. 24 - p. 1480.

8. Mölg, T., Hardy, D. R. Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro, // J. Geophys. Res., 2004. - v. 109 - p. 1.

9. Ohmura, A. Physical basis for the temperature-based melt-index method, // J. Appl. Meteor., 2001. - v. 40 - p. 753.

10. Popovnin, V. V. Budgetary evolution of the representative glacier Djankuat, Doctoral thesis - Moscow: Lomonosov Moscow State University., 1989.

11. Popovnin, V. V., Rezepkin, A. A., Tielidze, L. G. The growth of surface moraine in the glacier Djankuat tongue, // Kriosfera Zemli, 2015. - v. 19 - no. 1 - p. 88.

12. Rets, E. P., Frolova, N. L., Popovnin, V. V. Modeling of surface melting of mountain glacier, // Led i Sneg, 2011. - v. 116 - no. 4 - p. 24.

13. Volkov, Yu. A., Kuharets, V. P., Tcwang, L. R. Turbulence of atmospheric boundary layer above the steppe and sea surface, // Izvestiya, Atmospheric and Oceanic Physics, 1968. - v. 4 - no. 10 - p. 18.

14. Voloshina, A. P. Meteorology of mountain glaciers, // MGI, 2001. - v. 92 - p. 3.

15. Wheler, B. A., Flowers, G. E. Glacier subsurface heat-flux characterizations for energy-balance modeling in the Donjek Range, southwest Yukon, Canada, // Journal of Glaciology, 2011. - v. 57 - p. 121.

16. Wheler, B. A., et al. Petersen Effects of Temperature Forcing Provenance and Extrapolation on the Performance of an Empirical Glacier-Melt Model, // Arctic, Antarctic, and Alpine Research, 2014. - v. 46 - no. 2 - p. 379.

17. Zilitinkevich, S. S. The Dynamics of the Atmospheric Boundary Layer - Leningrad: Gidrometeoizdat., 1972. - 239 pp.

Login or Create
* Forgot password?