THE EFFECTS OF GALACTIC COSMIC RAYS, MODULATED BY SOLAR TERRESTRIAL MAGNETIC FIELDS, ON THE CLIMATE
Abstract and keywords
Abstract (English):
The results of analyzing the paleodata on solar activity variations (variations of cosmogenic 14 C and 10 Be isotopes in the terrestrial records, such as glaciers, tree rings, sea-floor marine and lacustrine sediments, loess, etc.), the paleomagnetic and archeomagnetic data, as well as the paleoclimatic data, prove that the flows of galactic cosmic rays, modulated by heliomagnetic and geomagnetic fields, affect the climate of the Earth. In this study we analyzed different periods of time, namely, the last millennium, the Holocene epoch (up to 10-12 thousand years ago), and the time interval of 10-50 thousand years ago. Our analysis suggested that the variations of the cosmic ray fluxes seemed to be the most effective factor responsible for long-term climate variations.

Keywords:
cosmic rays, solar and geomagnetic variations, climate changes, cosmogenic and stable nuclides.
Text
Publication text (PDF): Read Download
References

1. Alavi, Appl. Statist., v. 14, 1965., doi:https://doi.org/10.2307/2985355

2. Bard, Earth Planet. Sci. Lett., v. 50, 1997., doi:https://doi.org/10.1016/S0012-821X(97)00082-4

3. Beer, The Sun as a Variable Star: Solar and Stellar Irradiance Variations, edited by J. M. Pap, C. Fruhlich, H. S. Hudson, and S. K. Solanki, 1994.

4. Bradley, Intern. Geophys. Ser., v. 64, 1999.

5. Castagnoli, Radiocarbon, v. 22, 1980.

6. Charvátová, Ann. Geophys., v. 18, 2000., doi:https://doi.org/10.1007/s00585-000-0399-x

7. Cox, Science, v. 63, 1969., doi:https://doi.org/10.1126/science.163.3864.237

8. Damon, Rare Nuclear Processes, edited by P. P. Povinec, Proc. 14th Europhys. Conf. on Nuclear Phys., 1992.

9. Damon, The Sun in Time, edited by C. P. Sonett, M. S. Giampapa, and M. S. Mathews, 1992.

10. Dergachev, Geomagnetism and Aeronomy, v. 34, no. 4, 1974.

11. Dergachev, Phys. Solariterr., no. 8, 1978.

12. Dergachev, Geomagnetism and Aeronomy, v. 35, no. 2, 1996.

13. Dergachev, Radiocarbon, v. 37, 1995.

14. Dergachev, Biophysics, v. 43, no. 5, 1998.

15. Dergachev, Geomagnetism and Aeronomy, v. 40, no. 3, 2000.

16. Dergachev, Proc. First Solar and Space Weather Euroconference "The Solar Cicle and Terrestrial Climate'', 25-29 September, 2000, Santa Cruz de Tenerife, 2000.

17. Dergachev, Some Aspects of Choosing an Optimum Model for a Dynamic Carbon Reservoir, Preprint no. 491, 1975.

18. Drijfhout, Geophys. Res. Lett., v. 26, 1999., doi:https://doi.org/10.1029/1998GL900277

19. Elsasser, Nature, v. 178, 1956., doi:https://doi.org/10.1038/1781226a0

20. Esper, Science, v. 295, 2002., doi:https://doi.org/10.1126/science.1066208

21. Finkel, J. Geophys. Res., v. 102, no. C12, 1997., doi:https://doi.org/10.1029/97JC01282

22. Frank, Earth Planet. Sci. Lett., v. 149, 1997., doi:https://doi.org/10.1016/S0012-821X(97)00070-8

23. Fröhlich, Geophys. Res. Lett., v. 25, 1998.

24. Grootes, J. Geophys. Res., v. 102, 1997., doi:https://doi.org/10.1029/97JC00880

25. Groverman, University of Maryland Publication, v. 79-181, 1979.

26. Guyodo, Earth Planet. Sci. Lett., v. 143, 1996., doi:https://doi.org/10.1016/0012-821X(96)00121-5

27. Guyodo, Nature, v. 399, 1999., doi:https://doi.org/10.1038/20420

28. Jenkins, pectral Analysis and Its Applications, Iss. 2, 1972.

29. Jones, J. Climate, v. 7, 1994., doi:https://doi.org/10.1175/1520-0442(1994)007<1794:HSATVA>2.0.CO;2

30. Lawrence, Geophys. Res. Lett., v. 25, 1998., doi:https://doi.org/10.1029/97GL03568

31. Lean, Science, v. 240, 1988., doi:https://doi.org/10.1126/science.240.4854.906

32. Lean, Astrophys. J., v. 492, 1998., doi:https://doi.org/10.1086/305015

33. Lehman, Phys. Earth Planet. Sci., v. 93, 1996., doi:https://doi.org/10.1016/0031-9201(95)03070-0

34. Lockwood, Geophys. Res. Lett., v. 26, 1999., doi:https://doi.org/10.1029/1999GL900485

35. Mann, Eos, v. 84, 2003.

36. Mann, Geophys. Res. Lett., v. 30, no. 15, 2003., doi:https://doi.org/10.1029/2003GL017814

37. Milankovitch, Mathematic Climatology and the Astronomic Theory of Climate Variations, 1939.

38. Pallé Bago, Astron. and Geophys., v. 41, no. 4, 2000.

39. Pallé Bago, J. Atmos. Terr. Phys., v. 64, 2002., doi:https://doi.org/10.1016/S1364-6826(01)00105-5

40. Petrova, Characteristic Geomagnetic Field Variations in the Past, 1992.

41. Pudovkin, Geomagnetism and Aeronomy, v. 32, no. 1, 1992.

42. Pudovkin, J. Atmos. Terr. Phys., v. 57, 1995., doi:https://doi.org/10.1016/0021-9169(94)00109-2

43. Roble, J. Geophys. Res., v. 90, no. D4, 1985.

44. Sagnotti, Earth Planet. Sci. Lett., v. 192, 2001., doi:https://doi.org/10.1016/S0012-821X(01)00438-1

45. Schmidt, Naturwissenschaftliche Rundschau, v. 5, 1988.

46. Shackleton, Trans. Soc. R. Edinburgh Earth Sci., v. 81, 1990.

47. Sonett, Nature, v. 308, 1984., doi:https://doi.org/10.1038/307141a0

48. Soon, Energy and Environment, v. 14, 2003., doi:https://doi.org/10.1260/095830503765184619

49. Steig, Geogr. Ann., v. 82A, 2000., doi:https://doi.org/10.1111/1468-0459.00122

50. Stozhkov, Geomagnetism and Aeronomy, v. 36, no. 4, 1996.

51. Stuiver, Radiocarbon, v. 35, no. 1, 1993.

52. Stuiver, The Holocene, v. 3, 1993.

53. Stuiver, Radiocarbon, v. 40, no. 3, 1998.

54. Svensmark, Phys. Rev. Lett., v. 81, 1998., doi:https://doi.org/10.1103/PhysRevLett.81.5027

55. Svensmark, J. Atmos. Terr. Phys., v. 59, 1997., doi:https://doi.org/10.1016/S1364-6826(97)00001-1

56. Teanby, Geophys. J. Int., v. 142, 2000., doi:https://doi.org/10.1046/j.1365-246x.2000.00180.x

57. Van Geel, Quat. Sci. Rev., v. 18, 1999., doi:https://doi.org/10.1016/S0277-3791(98)00088-2

58. Vasiliev, Annales Geophysical, v. 20, 2002.

59. Vasiliev, Geomagnetism and Aeronomy, v. 39, no. 6, 1999.

60. Waple, Clim. Dyn., v. 18, 2002.

61. White, J. Geophys. Res., v. 102, 1997., doi:https://doi.org/10.1029/96JC03549

62. Webber, Space Sci. Rev., v. 83, 1998., doi:https://doi.org/10.1023/A:1005018823031

Login or Create
* Forgot password?