The regularities of the global intraplate volcanism of the Earth are explained by the mantle plumes originating at the heads and margins of two piles of dense material of the hot and relatively heavy $D''$~layer at the base of the mantle. Due to thermal blanket effect under a supercontinent the overheated region with ascending flows arises in the mantle. These flows distort the $D''$~layer and produce the thermochemical piles in the lowermost mantle under the supercontinent. It is supposed that the pile under Africa originated at the time of existence of Pangea, while the pile under the Pacific Ocean originated at the time of existence of Rodinia. As Africa succeeds to Pangea, the pile under Africa exists until now. But it stays unclear why the pile under the Pacific Ocean exists up to now despite supercontinent Rodinia has been broken-up a long time ago. The numerical models of thermochemical convection in the whole mantle with spherical geometry which include the heavy $D''$~layer allow to clear up effects of supercontinents and lithospheric plates on deformations of the $D''$~layer by mantle flows and formation of the thermochemical piles.
Convection; lower mantle; $D''$~layer; plumes; plates
1. Bull, A. L., McNamara, A. K., Ritsema, J. Synthetic tomography of plume clusters and thermochemical piles, // Earth Planet. Sci. Lett., 2009. - v. 278 - p. 152.
2. Burke, K., Torsvik, T. H. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle, // Earth Planet. Sci. Lett., 2004. - v. 227 - p. 531.
3. Deschamps, F., Cobden, L., Tackley, P. The primitive nature of large low shear wave velocity provinces, // Earth Planet. Sci. Lett., 2012. - v. 349-350 - p. 198.
4. Evseev, A. N. Mantle convection and phase transitions // The Ninth International Conference on Physicochemical and Rock Physical Studies for Earth Sciences - Moscow: IFKh RAN, GEOKhI RAN., 2008. - p. 223.
5. Grachev, A. F. Mantle plumes and problems of geodynamics, // Izv. Phys. Earth, 2000. - v. 36 - no. 4 - p. 263.
6. Ismail-Zadeh, A., Tackley, P. J. Computational Methods for Geodynamics - Cambridge: Cambridge Univ. Press., 2010. - 313 pp.
7. Julian, B. R., Foulger, G., Hatfield, O., Jackson, S., Simpson, E., Einbeck, J., Moore, A. Hotspots in Hindsight // AGU Fall Meeting, San Francisco 1, 15-19 December 2014 - Washington, DC: AGU., 2014. - p. S51B.
8. Masters, G., Laske, G., Bolton, H., Dziewonski, A. M. The relative behaviour of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure // Karato S.-I., Forte A. M., Liebermann R. C., Masters G., Stixrude L. (eds.), Earth's Deep Interior: Mineral Physics and Seismic Tomography From the Atomic to the Global Scale - Washington, DC: Am. Geophys. Union., 2000. - p. 63.
9. Moresi, L. N., Gurnis, M. Constraints on lateral strength of slabs from 3-D dynamic flow models, // Earth Planet. Sci. Lett., 1996. - v. 138 - p. 15.
10. Schubert, G., Turcotte, D. L., Olson, P. Mantle Convection in the Earth and Planets - Cambridge, England: Cambridge Univ. Press., 2001. - 940 pp.
11. Torsvik, T. H., Burke, K., Steinberger, B., Webb, S., Ashwal, L. Diamonds sampled by plumes from the core-mantle boundary, // Nature, 2010. - v. 466 - p. 352.
12. Tosi, N., Yuen, D. Bent-shaped plumes and horizontal channel flow beneath the 660~km discontinuity, // Earth Planet. Sci. Lett., 2011. - v. 312 - p. 348.
13. Tronnes, R. G. Structure, mineralogy and dynamics of the lowermost mantle, // Min. Petrol., 2010. - v. 99 - p. 243.
14. Trubitsyn, V. P., Trubitsyn, A. P. Numerical model for the generation of the ensemble of lithospheric plates and their penetration through the 660-km boundary, // Izvestiya, Physics of the Solid Earth, 2014. - v. 50 - no. 6 - p. 853.
15. Trubitsyn, V. P., Evseev, M. N. Mantle plumes on the boundary of upper and lower mantle, // Doklady Earth Sciences, part 1, 2014. - v. 459 - p. 1397.
16. Zhong, S. Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature and upper mantle temperature, // J. Geophys. Res., 2006. - v. 111 - p. 1397.