The article presents data on the study of the AI-3359 marine sediment core recovered from the North Atlantic east of the Reykjanes Ridge during the Late Pleistocene to Holocene the last 45,000 years. The data on ice-rafted debris IRD and N.~pachyderma~s distribution together with changes in the relative abundance of CaCO$_3$ enable assigning several cooling events during the investigated period. In the period of Late Pleistocene we found 4 cold events, which correspond to Heinrich events. However, ages of these cold events are slightly different from well-known ages of the Heinrich events. Six Holocene events in the study area centred at 10,800, 10,100, 6020, 2200, and 1200 years BP are the most pronounced cooling events with relatively intensive ice rafting in the study area. Cooling of the subsurface layer without intensive ice rafting is observed at 9300, 8300 and 4100 years BP. In the period of the Little Ice Age, which is marked by cooling between 200 and 500 years BP, a late response of the subsurface layer on cooling on the surface is registered. During some warm intervals 800--1200 years BP, 3200--3900 years BP, 5300--5900 years BP, and 9600--10,000 years BP, ice rafting still occurred in the study area. Increase in the number of foraminiferal shells, calcium carbonate, and IRD during the last 230 years BP indicates a shift of the Arctic Front to the south resulting in intensive ice rafting.
North Atlantic, paleocirculation, Heinrich events, Bond events, ice-rafted debris, Holocene
1. Alekseeva, T. N., Sval'nov, V. N. The refined wet sieving method for the analysis of fine-grained sediments, // Lithology and Mineral Resources, 2005. - v. 40 - no. 6 - p. 564.
2. Alonso-Garcia, M., Sierro, F. J., Flores, J. A. Arctic front shifts in the subpolar North Atlantic during the Mid-Pleistocene 800-400 ka and their implications for ocean circulation, // Palaeogeography, Palaeoclimatology, Palaeoecology, 2011. - v. 311 - p. 268.
3. Alonso-Garcia, M., et al. Freshening of the Labrador Sea as a trigger for Little Ice Age development, // Clim. Past, 2017. - v. 13 - p. 317.
4. Andersen, C., Koc, N., Moros, M. A highly unstable Holocene climate in the subpolar North Atlantic: evidence from diatoms, // Quaternary Science Reviews, 2004. - v. 23 - p. 2155.
5. Andrews, J. T., Voelker, A. H. L. ``Heinrich events'' ampersand sediments: A history of terminology and recommendations for future usage, // Quaternary Science Reviews, 2018. - v. 187 - p. 31.
6. Barash, M. S. Quaternary paleoceanology of the Atlantic ocean - Moscow: Nauka., 1988. - 272 pp.
7. Barash, M. S., Yushina, I. G., Spielhagen, R. F. Reconstructions of the Quaternary Paleohydrologycal Variability by Planktonic Foraminifers North Atlantic, Reykjanes Ridge, // Oceanology, 2002. - v. 42 - no. 5 - p. 711.
8. Bersch, M., Meincke, J., Sy, A. Interannual thermohaline changes in the northern North Atlantic 1991-1996, // Deep-Sea Research Part II, 1999. - v. 46 - p. 55.
9. Bianchi, G. G., McCave, I. N. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland, // Nature, 1999. - v. 397 - p. 515.
10. Bond, G. C., Lotti, R. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation, // Science, 1995. - v. 267 - p. 1005.
11. Bond, G., et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period, // Nature, 1992. - v. 360 - no. 6401 - p. 245.
12. Bond, G., et al. A pervasive millennial-scale cycle in the North Atlantic Holocene and glacial climates, // Science, 1997. - v. 278 - no. 5341 - p. 245.
13. Bond, G. C., et al. The North Atlantic's l-2 kyr climate Rhythm: Relation to Heinrich Events, Dansgaard/Oeschger cycles and the Little Ice Age // Mechanisms of Global Climate Change at Millennial Time Scales Geophysical Monograph, 112 - Washington, DC: AGU., 1999. - p. 35.
14. Bond, G., et al. Persistent solar influence on North Atlantic climate during the Holocene, // Science, 2001. - v. 294 - p. 2130.
15. Booth, R. K., et al. A severe centennial-scale drought in midcontinental North America 4200 years ago and apparent global linkages, // The Holocene, 2005. - v. 15 - no. 3 - p. 321.
16. Brambilla, E., Talley, L. D., Robbins, P. E. Subpolar Mode Water in the northeastern Atlantic: 1. Averaged properties and mean circulation, // J. Geophys. Res., 2008. - v. 113 - no. S04025 - p. 1.
17. Broecker, W. S. The Great Ocean Conveyor, // Oceanography, 1991. - v. 4 - p. 79.
18. Brooks, N. Cultural responses to aridity in the Middle Holocene and increased social complexity, // Quaternary International, 2006. - v. 151 - p. 29.
19. Came, R. E., Oppo, D. W., McManus, J. F. Amplitude and timing of temperature and salinity variability in the subpolar North Atlantic over the past 10 k.y., // Geology, 2007. - v. 35 - no. 4 - p. 315.
20. Clarke, G. K. C., et al. Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event, // Quaternary Science Reviews, 2004. - v. 23 - p. 389.
21. Denton, G. H., Broecker, W. S. Wobbly ocean conveyor circulation during the Holocene?, // Quaternary Science Reviews, 2008. - v. 27 - p. 1939.
22. Eynaud, F., de Abreu, L., Voelker, A. Position of the Polar Front along the western Iberian margin during key cold episodes of the last 45 ka, // Geochemistry, Geophysics, Geosystems, 2009. - v. 10 - no. 7 - p. Q07U051.
23. Ganopolski, A., Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model, // Nature, 2001. - v. 409 - p. 153.
24. Giraudeau, J., et al. Coccolith evidence for instabilities in surface circulation south of Iceland during Holocene times, // Earth and Planetary Science Letters, 2000. - v. 179 - p. 257.
25. Haine, T., et al. North Atlantic Deep Water Formation in the Labrador Sea, Recirculation through the Subpolar Gyre, and Discharge to the Subtropics // Arctic-Subarctic Ocean Fluxes, Defining the Role of the Northern Seas in Climate, R. R. Dickson, J. Meincke, and P. Rhines Eds. - Dordrecht: Springer., 2008. - p. 653.
26. Heinrich, H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years, // Quaternary Research, 1988. - v. 29 - no. 2 - p. 142.
27. Hemming, S. R. Heinrich events: Massive Late Pleistocene detritus layers of the North Atlantic and their global climate imprint, // Rev. Geophys., 2004. - v. 42 - no. RG1005 - p. 1.
28. Johannessen, T., et al. The relationship between surface water masses, oceanographic fronts and paleoclimatic proxies in surface sediments of the Greenland, Iceland, Norwegian Seas, // NATO ASI Series, 1994. - v. I - p. 61.
29. Kidd, R. B., Hill, P. R. Sedimentation on Feni and Gardar sediment Drifts // Init. Repts. DSDP, 94 Eds. Ruddiman W. F., Kidd R. B., Thomas E., et al. - Washington, US: US Government Printing Office., 1987. - p. 1217.
30. Klyuvitkin, A. A., et al. Geological Studies of the Northern Atlantic during the 49th Cruise of the R/V Akademik Ioffe, // Oceanology, 2016. - v. 56 - no. 5 - p. 760.
31. Kohfeld, K. E., et al. Neogloboquadrina pachyderma sinistral coiling as paleoceanographic tracers in polar waters: Evidence from Northeast Water Polynya plankton tows, sediment traps, and surface sediments, // Paleoceanography, 1996. - v. 11 - no. 6 - p. 679.
32. Lisitzin, A. P. Processes of Ocean Sedimentation - Moscow: Nauka., 1978. - 392 pp.
33. Lisiecki, L. E., Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic $\delta^18$O records, // Paleoceanography, 2005. - v. 20 - no. PA1003 - p. 1.
34. Ljungqvist, F. C. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia, // Geogr. Ann., 2010. - v. 92 - p. 339.
35. MacAyeal, D. R. Binge/Purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich Events, // Paleoceanography, 1993. - v. 8 - no. 6 - p. 775.
36. Marshall, S. J., Koutnik, M. R. Ice sheet action versus reaction: Distinguishing between Heinrich events and Dansgaard-Oeschger cycles in the North Atlantic, // Paleoceanography, 2006. - v. 21 - no. PA2021 - p. 1.
37. Matul, A. G. On the problem of paleoceanological evolution of the Reykjanes ridge region North Atlantic during the last deglaciation based on a study of radiolarian, // Oceanology, 1994. - v. 34 - no. 6 - p. 881.
38. McCave, I. N., Manighetti, B., Robinson, S. G. Sortable silt and fine sediment size/composition slicing: Parameters for paleocurrent speed and palaeoceanography, // Paleoceanography, 1995. - v. 10 - no. 3 - p. 593.
39. McCave, I. N., Thornalley, D. J. R., Hall, I. R. Relation of sortable silt grain-size to deep-sea current speeds: Calibration of the ``Mud Current Meter'', // Deep-Sea Research Part I, 2017. - v. 127 - p. 1.
40. Moros, M., et al. Sea surface temperatures and ice rafting in the Holocene North Atlantic: climate influences on northern Europe and Greenland, // Quat. Sci. Res., 2004. - v. 23 - p. 2113.
41. Moros, M., et al. Reconstruction of the late Holocene changes in the Sub-Arctic Front position at the Reykjanes Ridge, North Atlantic, // The Holocene, 2012. - v. 22 - p. 877.
42. Oppo, D. W., Lehman, S. J. Mid-depth circulation of the subpolar North Atlantic during the Last Glacial Maximum, // Science, 1993. - v. 259 - p. 1148.
43. Peck, V. L., et al. High resolution evidence for linkages between NW European ice sheet instability and Atlantic Meridional Overturning Circulation, // Earth and Planetary Science Letters, 2006. - v. 243 - p. 476.
44. Perner, K., et al. Mid to late Holocene strengthening of the East Greenland Current linked to warm subsurface Atlantic water, // Quaternary Science Reviews, 2015. - v. 129 - p. 296.
45. Petelin, V. P. Grain-Size Analysis of Sea Bottom Sediments - Moscow: Nauka., 1967. - 128 pp.
46. Rahmstorf, S. Ocean circulation and climate during the past 120,000 years, // Nature, 2002. - v. 419 - p. 207.
47. Rahmstorf, S. Thermohaline Ocean Circulation // Encyclopedia of Quaternary Sciences Ed. S. A. Elias - Amsterdam: Elsevier., 2006. - p. 1.
48. Rashid, H., et al. Signature of the Gold Cove event 10.2 ka in the Labrador Sea, // Quaternary International, 2014. - v. 352 - p. 212.
49. Rasmussen, S. O., et al. Early Holocene climate oscillations recorded in three Greenland ice cores, // Quaternary Science Reviews, 2007. - v. 26 - p. 1907.
50. Risebrobakken, B., et al. Early Holocene temperature variability in the Nordic Seas: The role of oceanic heat advection versus changes in orbital forcing, // Paleoceanography, 2011. - v. 26 - no. PA4206 - p. 1.
51. Ruddiman, W. F. Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic lat 40° to 65°, // Geol. Soc. Amer. Bull., 1977. - v. 88 - p. 1813.
52. Ruddiman, W. F., Bowles, F. A. Early interglacial bottom current sedimentation on the eastern Reykjanes Ridge, // Marine Geology, 1976. - v. 21 - p. 119.
53. Sarafanov, A., et al. Mean full-depth summer circulation and transports at the northern periphery of the Atlantic Ocean in the 2000s, // J. Geophys. Res., 2012. - v. 117 - no. C01014 - p. 1.
54. Sarnthein, M., et al. Fundamental modes and abrupt changes in North Atlantic circulation and climate over the last 60 ky - Concepts, reconstruction, and numerical modeling // The Northern North Atlantic: A Changing Environment Eds. P. Schäfer, W. Ritzrau, M. Schlüter, and J. Thiede - Heidelberg: Springer-Verlag., 2001. - p. 365.
55. Simstich, J., Sarnthein, M., Erlenkeuser, H. Paired $\delta^18$O signals of Neogloboquadrina pachyderma s and Turborotalita quinqueloba show thermal stratification structure in Nordic Seas, // Marine Micropaleontology, 2003. - v. 48 - no. 1-2 - p. 107.
56. Sivkov, V. V., Dorokhova, E. V., Bashirova, L. D. Contour Currents of the North Atlantic during the Last Glacial Cycle, // Oceanology, 2015. - v. 55 - no. 6 - p. 899.
57. Stuiver, M., Reimer, P. J. Extended $^14$C data base and revised CALIB 3.0 $^14$C age calibration program, // Radiocarbon, 1993. - v. 35 - no. 1 - p. 215.
58. Vidal, L., et al. Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events, // Earth Planet Sci. Lett., 1997. - v. 146 - p. 13.
59. Wang, S., et al. Abrupt Climate Changes of Holocene, // Chinese Geographical Science, 2013. - v. 23 - no. 1 - p. 1.
60. Wanner, H., et al. Mid- to late Holocene climate change: an overview, // Quaternary Science Reviews, 2008. - v. 27 - p. 1791.
61. Wanner, H., et al. Structure and origin of Holocene cold events, // Quaternary Science Reviews, 2011. - v. 30 - no. 21-22 - p. 3109.
62. Wanner, H., et al. Holocene climate variability and change; a data-based review, // J. Geol. Soc., 2014. - v. 172 - no. 2 - p. 254.
63. Werner, K., et al. Holocene sea subsurface and surface water masses in the Fram Strait - Comparisons of temperature and sea-ice reconstructions, // Quaternary Science Reviews, 2016. - v. 147 - p. 194.
64. Wright, A. K., Flower, B. P. Surface and deep ocean circulation in the subpolar North Atlantic during the mid-Pleistocene revolution, // Paleoceanography, 2002. - v. 17 - no. 4 - p. 1.
65. Young, N. E., et al. Age of the Fjord Stade moraines in the Disko Bugt region, western Greenland, and the 9.3 and 8.2 ka cooling events, // Quaternary Science Reviews, 2013. - v. 60 - p. 76.