This paper describes our experience in the application of Lagrangian mini-drifters in studies of coastal water circulation. As shown by our experiments in the Southeastern Baltic Sea, an application of Lagrangian mini-drifters makes it possible to detect the presence of complex sub-mesoscale vortex processes and inertial oscillations, i.e., processes that are difficult to numerically simulate. Moreover, the presence of vortex formations is able to keep passive objects drifts, oil anthropogenic pollution and so on floating in a strictly localized area for at least 1~week, even in changeable wind conditions. Special attention in the paper is paid to a performance comparison of the application of mini-drifters and an Acoustic Doppler Current Profiler ADCP. The advantages of drifters for determining flow parameters at low speeds are noted. The main advantages of the proposed drifters are taken into account: the low cost of manufacturing drifters $\sim 150$~USD per system along with the low cost of GSM communications, the ease of manufacturing and operation, with no special technical experience required, and the link to obtaining operational data in real-time for up to several weeks make these systems valuable supplementary tools for remote sensing studies of processes in coastal zones.
Lagrangian drifter, satellite remote sensing, coastal dynamics, Acoustic Doppler, Current Profiler ADCP, Seatrack Web HELCOM, submesoscale eddies, Black Sea, Baltic Sea
1. Ambj#xF6;rn, C., et al. Seatrack Web: The HELCOM Tool for Oil Spill Prediction and Identification of Illegal Polluters // Oil Pollution in the Baltic Sea, Kostianoy A., Lavrova O. eds. The Handbook of Environmental Chemistry, Vol. 27 - Berlin, Heidelberg: Springer-Verlag., 2011.
2. Blumberg, A. F., Mellor, G. L. A Description of a Three-Dimensional Coastal Ocean Circulation Model - Washington, DC: American Geophysical Union., 1987. - 1#x2013;16 pp.
3. Carlson, D. F., et al. How useful are progressive vector diagrams for studying coastal ocean transport?, // Limnology and Oceanography: Methods, 2010. - no. 8 - p. 98.
4. D'Asaro, E., Shcherbina, A., et al. Ocean convergence and dispersion of flotsam, // Proceedings of the National Academy of Sciences, 2018. - v. 115 - no. 6 - p. 1162.
5. Davis, R. E. Drifter observations of coastal ocean surface currents during CODE: The statistical and dynamical views, // J. Geophys. Res., 1985. - v. 90 - no. C3 - p. 4756.
6. Gade, M., Seppke, B., Dreschler-Fischer, L. Mesoscale surface current fields in the Baltic Sea derived from multi-sensor satellite data, // Intern. J. Remote Sens., 2012. - v. 33 - no. 10 - p. 3122.
7. Ginzburg, A., Bulycheva, E., Kostianoy, A., et al. Vortex dynamics in the Southeastern Baltic Sea from satellite radar data, // Oceanology, 2015a. - v. 55 - no. 6 - p. 805.
8. Ginzburg, A. I., Bulycheva, E. V., Kostianoy, A. G., Solovyev, D. M. On the role of vortices in the transport of oil pollution in the Southeastern Baltic Sea according to satellite monitoring, // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015b. - v. 12 - no. 3 - p. 149.
9. Hordoir, R., An, B. W., Haapala, J., Meier, H. E. M. A 3d Ocean Modelling Configuration for Baltic and North Sea Exchange Analysis. Technical Report - Norrk#xF6;ping: SMHI., 2013. - 1#x2013;72 pp.
10. Jankowski, A. Variability of coastal waters hydrodynamics in the Southern Baltic: Hindcast modeling of upwelling event along the Polish coast, // Oceanologia, 2002. - v. 44 - no. 4 - p. 395.
11. Joseph, A. Measuring Ocean Currents, 1st edition - Amsterdam, The Netherlands: Elsevier Science B.V.., 2014. - 1#x2013;430 pp.
12. Karimova, S., Gade, M. Improved statistics of submesoscale eddies in the Baltic Sea retrieved from SAR imagery, // Intern. J. Remote Sens., 2016. - v. 37 - no. 10 - p. 2394.
13. Lavrova, O., Mityagina, M., Bocharova, T., Gade, M. Multichannel observation of eddies and mesoscale features in coastal zones // Remote Sensing of the European Seas, Barale V. and Gade M. eds. - Berlin: Springer Verlag., 2008. - p. 463.
14. Lavrova, O., Karimova, S., Mityagina, M. Eddy activity in the Baltic Sea retrieved from satellite SAR and optical data // Proceedings of 3rd Intern. Workshop SeaSAR 2010, Special Publication ESA-SP-679 - Frascati, Italy: ESA., 2010. - p. 1.
15. Lavrova, O. Y., Kostianoy, A. G., Lebedev, S. A., Mityagina, M. I., Ginzburg, A. I., Sheremet, N. A. Complex Satellite Monitoring of the Russian Seas - Moscow, Russia: IKI RAN., 2011. - 194#x2013;197 pp.
16. Lavrova, O. Yu., Mityagina, M. I., Kostianoy, A. G. Satellite Methods for Detecting and Monitoring Marine Zones of Ecological Risk - Moscow, Russia: IKI RAN., 2016. - 1#x2013;336 pp.
17. Lavrova, O. Y., Krayushkin, E. V., Nazirova, K. R., Strochkov, A. Y. Vortex structures in the Southeastern Baltic Sea: Satellite observations and concurrent measurements // Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2018, Proceedings Volume 10784 - Berlin, Germany: SPIE., 2018.
18. LaCase, J. H. Statistics from Lagrangian observations, // Progress in Oceanography, 2008. - v. 77 - p. 1.
19. Lumpkin, R., Ozgokmen, T., Centurioni, L. Advances in the application of surface drifters, // Annual Review of Marine Science, 2017. - no. 9 - p. 59.
20. Lynch, D. R., Greenberg, D. A., et al. Particles in the Coastal Ocean: Theory and Applications - Cambridge: Cambridge University Press., 2015.
21. Madec, G., Delecluse, P., Imbard, M., Levy, C. OPA 8.1 Ocean General Circulation Model reference manual. Note du P#xF4;le de mod#xE9;lisation - France: Institut Pierre Simon Laplace IPSL., 1998. - 1#x2013;91 pp.
22. Madec, G. NEMO Ocean Engine, User Manual, Note du P#xF4;le de mod#xE9;lisation - France: Institut Pierre Simon Laplace IPSL., 2008.
23. Marmorino, G. O., Holt, B. , Molemaker M. J. , , DiGiacomo, P. M., Sletten, M. A. Airborne synthetic aperture radar observations of ``spiral eddy'' slick patterns in the Southern California Bight, // J. Geophysical Research, 2010. - v. 115 - no. C05010
24. Niiler, P. P., Davis, R. E., White, H. Water-following characteristics of a mixed layer drifter, // Deep-Sea Res., 1987. - v. 34 - no. 11 - p. 1867.
25. Poulain, P.-M., Barbanti, R., et al. Statistical description of the Black Sea near surface circulation using drifters in 1993#x2013;2003, // Deep-Sea Res., 2005. - v. 52 - p. 2250.
26. Poje, A., Ozgokmen, T., Lipphardt. B. Jr., Haus, B., Ryan, E., Haza, A., et al. Submesoscale dispersion in the vicinity of the Deepwater Horizon spill, // Proceedings of the National Academy of Sciences, 2014. - v. 111 - p. 12,693.
27. Svendsen, E., Berntsen, J., Skoden, M., Adlandsvik, B., Martinsen, E. Model simulation of the Skagerrak circulation and hydrography during Skagex, // J. Mar. Syst., 1996. - no. 8 - p. 219.
28. Sybrandy, A. L., Niiler, P. P. WOCE/TOGA Lagrangian drifter construction manual - La Jolla: Scripps Institution of Oceanography., 1991.
29. Zhurbas, V. M., Oh, I. S., Paka, V. T. Generation of cyclonic eddies in the Eastern Gotland Basin of the Baltic Sea following dense water inflows: Numerical experiments, // J. Mar. Syst., 2003. - no. 38 - p. 323.
30. Zhurbas, V., Stipa, T., et al. Generation of subsurface cyclonic eddies in the southeast Baltic Sea: Observations and numerical experiments, // J. Geophys. Res., 2004. - v. 109 - no. C05033