Records of seismic waves produced by local ocean bottom seismographs OBS or coastal networks are noisy. The noises, such as high-amplitude microquakes, different anthropogenic noises related to engineering works, explosions, land and sea transport noises, microseisms, or the high-frequency ambient noise, complicate the detection of earthquakes and, in particular, microearthquakes in continuous records produced by local seismic networks. Here we present an algorithm for the automated detection of useful signals in seismic records contaminated by noises. Typical useful and noisy signals at offshore and coastal sites are described together with a brief analysis of the application of the well-known methods to detect useful signals. The proposed algorithm makes a use of the following observations: i an increase in the signal amplitude, ii consistency over different seismic stations, and iii the signal duration. The cumulative short-term-average and long-term-average envelope function is used to estimate the signal duration and to distinguish useful seismic signals from short high-amplitude noisy microquakes. The proposed algorithm was tested on the records produced by local network in the north Egypt coast zone during engineering seismological studies and revealed its effectiveness.
Microearthquakes, OBS network, automated detection, ambient noise, microquakes; explosions
1. Al-Hashmi, S., Rawlins, A., Vernon, F. A. Wavelet Transform Method to Detect P and S-Phases in Three Component Seismic Data, // Open Journal of Earthquake Research, 2013. - v. 2 - p. 1.
2. Allen, R. V. Automatic earthquake recognition and timing from single traces, // Bull. Seism. Soc. Am., 1978. - v. 68 - p. 1521.
3. Allen, R. V. Automatic phase pickers: Their present and future prospects, // Bull. Seism. Soc. Am., 1982. - v. 72 - p. 225.
4. Anant, K. S., Dowla, F. U. Wavelet Transform Methods for Phase Identification in Three-Component Seismograms, // Bull. Seism. Soc. Am., 1997. - v. 87 - no. 6 - p. 1598.
5. Asming, V. E. The automatic system for regional seismicity monitoring NSDL. The principles of constructing and some results of use // Proceedings of the XII international seismological school ``The modern methods for seismological data processing and interpreting'' - Obninsk: Geophysical Survey of the RAS., 2017. - p. 33.
6. Baer, M., Kradolfer, U. An automatic phase picker for local and teleseismic events, // Bull. Seism. Soc. Am., 1987. - v. 77 - no. 4 - p. 1437.
7. Baranov, S. V. Application of the wavelet transform to automatic seismic signal detection, // Izv. Physics of the Solid Earth, 2007. - v. 43 - no. 2 - p. 177.
8. Bisztricsany, E. A. A new method for the determination of the magnitude of earthquakes, // Geofiz. Kozl., 1958. - v. 7 - p. 69.
9. Bochetti, F., Dentith, M. D., List, R. D. A fractal-based algorithm for detecting first arrivals on seismic traces, // Geophysics, 1996. - v. 61 - no. 4 - p. 1095.
10. Cichowicz, A. An automatic S-phase picker, // Bull. Seism. Soc. Am., 1993. - v. 83 - no. 1 - p. 180.
11. Diehl, T., Deichmann, N., Kissling, E., Husen, S. Automatic S-wave picker for local earthquake tomography, // Bull. Seism. Soc. Am., 2009. - v. 99 - no. 3 - p. 1906.
12. Earle, P. S., Shearer, P. M. Characterization of Global Seismograms Using an Automatic-Picking Algorithm, // Bull. Seism. Soc. Am., 1994. - v. 84 - no. 2 - p. 366.
13. Gvishiani, A. D., Agayan, S. M., Bogoutdinov, Sh. R. Fuzzy recognition of anomalies in time series, // Doklady Earth Sciences, 2008. - v. 421 - no. 1 - p. 838.
14. Jurkevics, A. Polarization analysis of three-component array data, // Bull. Seism. Soc. Am., 1988. - v. 78 - no. 5 - p. 1725.
15. Kovachev, S. A., Demidova, T. A., Sonkin, A. V. On the oscillations of ocean bottom seismographs excited by bottom currents, // Volc. Seis., 2000. - v. 21 - p. 741.
16. Kovachev, S. A., Kuzin, I. P. , Shoda, O. #x81;. , Soloviev, S. L. Attenuation of S-waves in the lithosphere of the Sea of Crete according to OBS observation, // Physics of the Earth and Planetary Interiors, 1991. - v. 69 - p. 101.
17. Leonard, M. Comparison of Manual and Automatic Onset Time Picking, // Bull. Seism. Soc. Am., 2000. - v. 90 - no. 6 - p. 1384.
18. Leonard, M., Kennett, B. L. N. Multi-component autoregressive techniques for the analysis of seismograms, // Phys. Earth Planet Int., 1999. - v. 113 - p. 247.
19. Levchenko, D. G. Recording of broadband seismic signals and possible precursors of strong earthquakes on the seabed - Moscow: Nauchnyj Mir Publ.., 2005. - 240 pp.
20. Liao, B., Chen, C., Sheu, T. Using a Fractal Analysis and Polarization Method for Phase Identification in Three-Component Seismograms, // Terr. Atmos. Ocean. Sci., 2010. - v. 21 - no. 5 - p. 791.
21. Liu, X., Zhou, H., Shen, P., Yang, X., Ma, Y., Li, H. Identification method of seismic phase in three-component seismograms on the basis of wavelet transform, // Acta Seismologica Sinica, 2000. - v. 13 - no. 2 - p. 136.
22. Madureira, G., Ruano, A. E. A neural network seismic detector, // Acta Technica Jaurinensis, 2009. - v. 2 - no. 2 - p. 159.
23. Maurer, W. J., Dowla, F. U. Seismic event interpretation using fuzzy logic and neural networks. Technical Report, Lawrence Livermore National Lab., CA - Washington, DC: Department of Energy Source Agency: Technical Information Center Oak Ridge Tennessee., 1994. - 28 pp.
24. Ostrovsky, A. A. Seafloor Seismic Experiments - Moscow: Nauka., 1998. - 255 pp.
25. Park, J., Kim, W., Baag, C. Phase identification analysis using directionality and rectilinearity functions in three component seismograms, // Geosci. J., 2004. - v. 8 - no. 2 - p. 199.
26. Rastin, S. J., Unsworth, C. P., Gledhill, K. R. Applying Haar and Mexican Hat Wavelets to Significantly Improve the Performance of the New Zealand GeoNet P-Phase Picker for the 2008 Matata Region Swarm, // Bull. Seism. Soc. Am., 2014. - v. 104 - no. 3 - p. 1567.
27. Romeo, G. Seismic signals detection and classification using artificial neural networks, // Annali di Geofisica, 1994. - v. 37 - no. 3 - p. 343.
28. Ross, Z. E., Ben-Zion, Y. Automatic picking of direct P, S seismic phases and fault zone head waves, // Geophys. J. Int., 2014. - v. 199 - p. 368.
29. Ruud, B. O., Lindholm, C. D., Husebye, E. S. An exercise in automating seismic record analysis and network bulletin production, // Bull. Seism. Soc. Am., 1993. - v. 83 - no. 3 - p. 660.
30. Sleeman, R., van Eck, T. Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings, // Phys. Earth Planet. Int., 1999. - v. 113 - p. 265.
31. Soloviev, S. L. History and Prospects of Marine Seismology Development - Moscow: Nauka., 1985. - 152 pp.
32. Soloviev, S. L. Seismological Bottom Observations in the USSR and Abroad - Moscow: Nauka., 1986. - 120 pp.
33. Soloviev, S. L., Kovachev, S. A. On the determination of local magnitudes of near earthquakes from OBS observations, // Acta Geophysica Polonica, 1994. - v. XLII - no. 4 - p. 273.
34. Takanami, T., Kitagawa, G. A new efficient procedure for estimation of onset times of seismic waves, // J. Phys. Earth, 1988. - v. 36 - p. 267.
35. Trnkoczy, A. Understanding and Parameter Setting of STA/LTA Trigger Algorithm. New Manual of Seismological Observatory Practice 2002, revised version - Potsdam: IASPEI, GFZ German Research Centre for Geosciences., 2012. - 20 pp.
36. Vassallo, M., Satriano, C., Lomax, A. Automatic picker developments and optimization: a strategy for improving the performances of automatic phase pickers, // Seismological Research Letters, 2012. - v. 83 - no. 3 - p. 541.
37. Vidale, J. E. Complex polarization analysis of particle motion, // Bull. Seism. Soc. Am., 1986. - v. 76 - no. 5 - p. 1393.
38. Zhao, Y., Takano, K. An Artificial Neural Network Approach for Broadband Seismic Phase Picking, // Bull. Seism. Soc. Am., 1999. - v. 89 - no. 3 - p. 670.