HOW LONG WILL THE "PRECESSION EPOCH'' LAST IN TERMS OF PLEISTOCENE GLACIAL CYCLES?
Abstract and keywords
Abstract (English):
Paleoclimate orbital theory, also known as astronomical, or Milankovitch theory is in common use to explain global climate changes in Pleistocene time, mainly glacial-interglacial cycles. However, there are well-known contradictions between this theory and empirical data that were intensively studied by a large number of scientists during last 30 years. Nevertheless, there has not been any important progress in resolution of these contradictions yet. This paper deals with a new approach to the research of problems relevant to the orbital theory. It is based on critical analysis of orbital theory history development. Main drawbacks of the recent version of the astronomical theory of paleoclimate and certain recommendations how to eliminate them are given. A great attention is given to the climatic influence of the Earth's feedbacks and the Earth's total annual insolation variations.

Keywords:
Milankovitch theory, paleoclimate, annual insolation variations, Pleistocene glacial terminations.
Text
Publication text (PDF): Read Download
References

1. Adh#xE9;mar, Revolutions de la mer: D#xE9;luges P#xE9;riodiques, 1842.

2. Barron, Earth Planet. Sci. Lett., v. 72, 1985., doi:https://doi.org/10.1016/0012-821X8590056-1

3. Bassinot, Earth Planet. Sci. Lett., v. 126, 1994., doi:https://doi.org/10.1016/0012-821X9490244-5

4. Berger, Vistas Astron., v. 24, 1980., doi:https://doi.org/10.1016/0083-66568090026-4

5. Berger, Int. J. Earth Sci., v. 88, 1999., doi:https://doi.org/10.1007/s005310050266

6. Berger, Quat. Sci. Rev., v. 10, 1991., doi:https://doi.org/10.1016/0277-37919190033-Q

7. Berger, Clim. Dyn., v. 14, 1998., doi:https://doi.org/10.1007/s003820050245

8. Berger, Paleoceanography, v. 20, 2005., doi:https://doi.org/10.1029/2005PA001173

9. Bol'shakov, Izv. Phys. Solid Earth, v. 37, 2001.

10. Bol'shakov, Russian J. Earth Sci., v. 5, no. 2, 2003.

11. Bol'shakov, Izv. Russian Academy of Sciences, Geography, no. 3, 2003.

12. Bol'shakov, The New Concept of the Orbital Theory of Paleoclimate, 2003.

13. Bol'shakov, Dokl. Earth Scienses, v. 389, 2003.

14. Bradley, The varves and climate of the Green River Epoch, 1929.

15. Broeker, Rev. Geophys. Space Phys., v. 8, no. 1, 1970., doi:https://doi.org/10.1029/RG008i001p00169

16. Budyko, Global Ecology, 1977.

17. Clark, Science, v. 286, 1999., doi:https://doi.org/10.1126/science.286.5442.1104

18. Clemens, J. Geophys. Res., v. 96, no. D12, 1991., doi:https://doi.org/10.1029/91JD02205

19. Clemens, Nature, v. 385, 1997.

20. Croll, Climate and Time in Their Geological Relations: A Theory of Secular Changes of the Earth's Climate, 1875.

21. Crucifix, Science Reviews, v. 125, 2006., doi:https://doi.org/10.1007/s11214-006-9058-1

22. Elkibbi, Earth Sci. Rev., v. 56, 2001., doi:https://doi.org/10.1016/S0012-82520100061-7

23. Hagelberg, Paleoceanography, v. 6, no. 6, 1991.

24. Hays, Science, v. 194, 1976., doi:https://doi.org/10.1126/science.194.4270.1121

25. Heckel, Geology, v. 14, 1986., doi:https://doi.org/10.1130/0091-7613198614lt;330:SCFPEMgt;2.0.CO;2

26. Herbert, Nature, v. 321, 1986., doi:https://doi.org/10.1038/321739a0

27. Huybers, Nature, v. 434, 2005., doi:https://doi.org/10.1038/nature03401

28. Imbrie, Icarus, v. 50, 1982., doi:https://doi.org/10.1016/0019-10358290132-4

29. Imbrie, Science, v. 207, 1980., doi:https://doi.org/10.1126/science.207.4434.943

30. Imbrie, Ice Ages, Solving the Mystery, 1986.

31. Imbrie, Milankovitch and Climate, Part 1, edited by A. L. Berger et al., 1984.

32. Imbrie, Paleoceanography, v. 8, 1993., doi:https://doi.org/10.1029/93PA02751

33. Kandiano, Terra Nova, v. 15, 2003., doi:https://doi.org/10.1046/j.1365-3121.2003.00488.x

34. Kent, J. Geophys. Res., v. 100, 1995., doi:https://doi.org/10.1029/95JB01054

35. Kukla, Curr. Antropol., v. 9, 1968.

36. Lisiecki, Paleoceanography, v. 20, 2005., doi:https://doi.org/10.1029/2004PA001071

37. Loutre, Geophys. Res. Lett., v. 27, no. 6, 2000., doi:https://doi.org/10.1029/1999GL006081

38. Loutre, Earth Planet. Sci. Lett., v. 221, 2004., doi:https://doi.org/10.1016/S0012-821X0400108-6

39. Maslin, Spec. Publ. Geol. Soc. London, v. 247, 2005.

40. Milankovitch, Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen, Handbuch der Klimatologie, 1, A, 1930.

41. Milankovitch, Roy. Serb. Acad. Spec. Publ., v. 133, 1941.

42. Olsen, Science, v. 234, 1986., doi:https://doi.org/10.1126/science.234.4778.842

43. Paillard, Revs. Geophys., v. 39, 2001., doi:https://doi.org/10.1029/2000RG000091

44. Raymo, Paleoceanography, v. 12, no. 4, 1997.

45. Raymo, Paleoceanography, v. 18, no. 1, 2003., doi:https://doi.org/10.1029/2002PA000791

46. Rial, Science, v. 285, 1999.

47. Roe, Geophys. Res. Lett., v. 33, 2006., doi:https://doi.org/10.1029/2006GL027817

48. Rossignol-Strick, Nature, v. 304, 1983., doi:https://doi.org/10.1038/304046a0

49. Ruddiman, Science, v. 212, 1981., doi:https://doi.org/10.1126/science.212.4495.617

50. Schwarzbach, Das klima der vorzeit Eine Einf#xFC;hrung in die Pal#xE4;oklimatologie, 1950.

51. Simpson, Nature, v. 141, 1938., doi:https://doi.org/10.1038/141591a0

52. Veevers, Geol. Soc. Amer. Bull., v. 94, 1987., doi:https://doi.org/10.1130/0016-7606198798lt;475:LPGEIGgt;2.0.CO;2

Login or Create
* Forgot password?