NEW PALEOMAGNETIC DATA FOR THE PERMIAN-TRIASSIC TRAP ROCKS OF SIBERIA AND THE PROBLEM OF A NON-DIPOLE GEOMAGNETIC FIELD AT THE PALEOZOIC-MESOZOIC BOUNDARY
Abstract and keywords
Abstract (English):
The thorough analysis of the available Permian-Triassic paleomagnetic data for the Siberian Platform and "Stable" Europe was carried out. Paleomagnetic poles, meeting to modern reliability criteria, were used to calculate the mean Permian-Triassic paleomagnetic poles of Siberia and Europe. The comparison of the resulting poles showed significant differences between them. Discussed in this paper are four potential factors that had caused the observed differences between the paleomagnetic poles of Siberia and Europe: 1nbsp;the large-scale relative movements of these cratons in post-Paleozoic time, 2nbsp;the different ages of the compared paleomagnetic poles, 3nbsp;the substantial contribution of non-dipole components to the geomagnetic field at the Paleozoic-Mesozoic boundary, and 4nbsp;the shallowing of the magnetic inclination in the European sedimentary rocks. Also discussed is the adequacy of the data selection. Arguments are advanced to prove that the possibility of the post-Paleozoic large-scale relative displacements of the cratonic blocks discussed as well as considerable age difference of their mean poles is unlikely. Also estimated were the input quadrupolar and octupolar sources in the total time-average geomagnetic field and also the values of the inclination shallowing factor, which might have explained the observed discordance of the Siberian and European poles. The best agreement of the European and Siberian paleomagnetic data was achieved for the octupolar coefficient g3 = - 10% or for the inclination shallowing factor f = 0.62. Our calculations showed that the statistically significant difference between the Siberian and European average poles can be removed assuming a very small value of the inclination shallowing corresponding to the f values of 0.9 to 0.95, potentially associated with some compaction of the studied sedimentary rocks. This gives grounds for interpreting the low inclinations in the European objects as the most probable source of the observed disagreement between the European and Siberian paleomagnetic data.

Keywords:
paleomagnetism, Siberian traps, Stable Europe, non-dipole field, inclination shallowing.
Text
Publication text (PDF): Read Download
References

1. Adam, Stud. Geophys. Geod., v. 19, 1975.

2. Aplonov, Geodynamics of Deep Sedimentary Basins, 2000.

3. Bachmanov, Geotectonics, v. 34, no. 5, 2001.

4. Barton, Earth Planet. Sci. Lett., v. 140, 1996.

5. Bazhenov, Earth Planet. Sci. Lett., v. 195, no. 2, 2002.

6. Bazhenov, Geotectonics, v. 19, no. 1, 1986.

7. Benkova, Earth Planet. Sci. Lett., v. 18, no. 2, 1973.

8. Besse, J. Geophys. Res., v. 107, no. B11, 2002., doi:https://doi.org/10.1029/2000JB000050

9. Besse, J. Geophys. Res., v. 108, no. B10, 2003., doi:https://doi.org/10.1029/2003JB002684

10. Biquand, Can. J. Earth Sci., v. 14, 1977.

11. Bochkarev, Tectonic Conditions of Geosyncline Closure and the Early Evolution Stages of Young Platforms with Reference to the West Siberian Platform and Its Surroundings, 1973.

12. Bogdanov, Explanatory Notes to the Tectonic Map of the Kara and Laptev Seas and North Siberia, 1998.

13. Boronin, The Instruments, Methods, and Interpretation of Geophysical Data, edited by V. P. Boronin, 1971.

14. Bowring, Science, v. 280, 1998.

15. Burov, Methods of the Paleomagnetic Study of Red Rocks, edited by V. P. Boronin, 1979.

16. Carlut, Geophys. J. Int., v. 134, 1998.

17. Coupland, J. Geophys. Res., v. 85, 1980.

18. Courtillot, Timescales of the Paleomagnetic Field, Geophys. Monogr., vol. 145, 2004.

19. Creer, Geophys. J. R. Astron. Soc., v. 33, 1973.

20. Distler, A Guide for the 7th International Symposium for Platinum Deposits, 1994.

21. Evans, Nature, v. 262, 1976.

22. Georgi, Geophys. J. R. Astron. Soc., v. 39, 1974.

23. Gialanella, Geol. Mijnbouw, v. 76, 1997.

24. Gubbins, Nature, v. 365, 1993.

25. Gurevich, Earth Planet. Sci. Lett., v. 136, 1995.

26. Gurevich, Tectonophysics, v. 379, 2004.

27. Heunemann, Geophys. Res. Abs., v. 5, 2003.

28. Hospers, Nature, v. 173, 1954.

29. Iosifidi, Phys. Solid Earth, v. 41, no. 2, 2005.

30. Irving, Paleomagnetism and Its Application to Geological and Geophysical Problems, 1964.

31. Johnson, Geophys. J. Int., v. 131, 1997.

32. Johnson, Geophys. J. Int., v. 122, 1995.

33. Kamo, Earth Planet. Sci. Lett., v. 214, 2003.

34. Kazanskii, Geol. Geophys, v. 36, no. 6, 1995.

35. Kelly, Geophys. J. Int., v. 128, 1997.

36. Kent, Earth Planet. Sci. Lett., v. 179, 2000.

37. Kent, Earth Planet. Sci. Lett., v. 160, 1998.

38. Khain, Tectonics of Continents and Oceans, 2001.

39. Khramov, Paleomagnetic Stratigraphic Studies, edited by A. N. Khramov, 1963.

40. Khramov, Phys. Solid Earth, v. 3, no. 1, 1967.

41. Khramov, Paleomagnitology, 1982.

42. King, Mon. Not. R. Astron. Soc., Geophys. Suppl., v. 7, 1955.

43. Kirichkova, Stratigraphy and Geological Correlation, v. 7, no. 1, 1999.

44. Kravchinsky, Geophys. J. Int., v. 148, 2002.

45. Kremenetsky, Geochemistry, v. 35, no. 6, 1997.

46. Kremenetsky, Exploration and Protection of Mineral Deposits, v. no. 5, 2002.

47. Livermore, Geophys. J. R. Astron. Soc., v. 73, 1983.

48. Livermore, Geophys. J. R. Astron. Soc., v. 79, 1984.

49. Lyons, J. Geophys. Res., v. 107, no. B7, 2002., doi:https://doi.org/10.1029/2001JB000521

50. McElhinny, Paleomagnetism and Plate Tectonics, 1973.

51. McElhinny, The Geocentric Axial Dipole Hypothesis: Current Status, 2003.

52. McElhinny, J. Geophys. Res., v. 101, 1996.

53. McElhinny, Int. Geophys. Ser., v. 73, 2000.

54. McFadden, Geophys. J. Int., v. 158, 2004.

55. McFadden, Geophys. J. Int., v. 103, 1990.

56. Meert, Earth Planet. Sci. Lett., v. 214, 2003.

57. Menning, The Permian of Northern Pangea, edited by P. A. Scholle, T. M. Peryt, and D. S. Ulmer-Scholle, vol. 1, 1995.

58. Merabet, Earth Planet. Sci. Lett., v. 80, 1986.

59. Merrill, Rev. Geophys. Space Phys., v. 15, 1977.

60. Merrill, The Earth's Magnetic Field, 1983.

61. Merrill, Magnetic Field of the Earth, 1996.

62. Merrill, Phys. Earth Planet. Inter., v. 139, 2003.

63. M#xFC;ller, Geology, v. 21, 1993.

64. Nawrocki, Earth Planet. Sci. Lett., v. 152, 1997.

65. N#xFC;rnberg, Tectonophysics, v. 191, 1991.

66. Opdyke, Earth Planet. Sci. Lett., v. 6, 1969.

67. Pavlov, Vestnik Moscow St. University, Geology, v. 4, no. 5, 2001.

68. Piper, Phys. Earth Planet. Inter., v. 55, 1989.

69. Pisarevdky, EOS Transactions, v. 84, 2003.

70. Quidelleur, Phys. Earth Planet. Inter., v. 82, 1996.

71. Quidelleur, Geophys. Res. Lett., v. 21, 1994.

72. Reichow, Science, v. 296, 2002.

73. Renne, Science, v. 33, 1995.

74. Rother, Gesteins und palaomagnetische Untersuchungen an Geisteinsproben vom Territorium der DDR, 1971.

75. Royer, A Global Isochron Chart, 1992.

76. Royer, J. Geophys. Res., v. 94, 1989.

77. Si, Terra Nova, v. 13, 2001.

78. Szurlies, Earth Planet. Sci. Lett., v. 212, 2003.

79. Tanaka, Geophys. J. Int., v. 120, 1995.

80. Torsvik, Earth Planet. Sci. Lett., v. 187, 2001.

81. Torsvik, Geophys. J. Int., v. 151, 2002.

82. Van der Ende, Paleogeophysics, edited by S. K. Runcorn, 1970.

83. Van der Voo, Paleomagnetism of the Atlantic Tethys and Iapetus Oceans, 1993.

84. Van der Voo, Earth Planet. Sci. Lett., v. 187, 2001.

85. Van der Voo, Timescales of the Paleomagnetic Field, Geophys. Monogr. vol. 145, edited by J. E. T. Channell et al., 2004.

86. Veselovskiy, Phys. Solid Earth, v. 39, no. 10, 2003.

87. Wells, Methods in Computational Physics, Geophys, vol. 13, edited by B. A. Bolt, 1973.

88. Wilson, Geophys. J. R. Astron. Soc., v. 19, 1970.

89. Wilson, Geophys. J. R. Astron. Soc., v. 22, 1971.

90. Zijderveld, Paleomagnetism of the Esterel rocks, 1975.

91. Zolotukhin, Abstracts for the Papers delivered at the Conference Held in Novosibirsk on Basic Research, 1996.

92. Yanovskii, Terrestrial Magnetism, 1978.

Login or Create
* Forgot password?