PROVENANCE AND TECTONIC SETTINGS OF ACCRETIONARY WEDGE SEDIMENTS ON NORTHEASTERN KARAGINSKI ISLAND KAMCHATKA, RUSSIAN FAR EAST
Abstract and keywords
Abstract (English):
The provenance and tectonic setting of the sediments and rare cobbles from the accretionary wedge on Karaginski Island were examined. This study provides a picture of the nature of the NE Asian paleomargin in the middle Eocene to early Miocene. The trace element geochemistry of shale from the flysch and m#xE9;lange indicates a their common provenance with the quartzofeldspathic and arkosic sandstones, and bderivation of these sediment types from active continental and island arcs with partially dissected basement rocks. Previous studies of the sandstones Shapiro et al., 2000 showed that they dominate in debris whose composition is very similar to those of the felsic extrusive and intrusive rocks in cobbles and boulders embedded in the sediments. Fission-track FT ages from detrital zircon from sandstones, and felsic cobbles show their derivation from sources with several cooling histories in the Late Cretaceous and Early Tertiary. The youngest detrital component probably represents continuous younging population from active volcanism in the source that is nearly the same age of deposition. The felsic cobbles represent the essentially random selection of the older material component. They include three distinct types: asubduction-related low-K tonalites and trondhjemites and their extrusive analogues; bcrustally-derived med-K two-mica leucogranites, and ccrustally-derived high-K biotite leucogranites. The felsic rock cobbles of all types have a narrow range of zircon FT grain ages that indicate cooling in the source in the Late Cretaceous to Early Paleogene. Tonalites and trondhjemites low-K cooled at 53.8 - 3.5/+3.8Ma and 78.5 - 6.7/+7.6Ma. The rhyolites med-K cooled at 70.1 - 3.7/+3.9Ma. The biotite leucogranites high-K cooled between 59.1Ma - 3.3/+3.9 and 58.6 - 3.2/+3.3Ma two clasts. The Late Cretaceous cooling ages 70-78Ma probably reflect original magmatic activity whereas the Early Eocene cooling ages may indicate timing of exhumation. The chemical and age data obtained on the felsic cobbles suggest derivation of the accretionary wedge sediments from a source formed either by: asubduction in the Late Cretaceous and collision/exhumation in the Early Paleogene; or by bcontinuous subduction. The closest petrochemical and age intrusive and extrusive analogues of the felsic cobbles occur only locally in the Olyutorsky Peninsula subterrane. Nonetheless, this structure is too small and too remote from Karaginski Island to supply enough material for the middle Eocene-early Miocene accretionary wedge sediments. We speculate that the structure of the Olyutorsky Peninsula subterrane might be extended in the shelf where several highs exist.

Keywords:
Shale, felsic clasts, fission-track dating, provenance, accretionary wedge, Kamchatka.
Text
Publication text (PDF): Read Download
References

1. Achmetiev, Izv. AN SSSR, Ser. geology, v. 3, 1989.

2. Anders, Geochim. Cosmochim. Acta, v. 53, 1989., doi:https://doi.org/10.1016/0016-70378990286-X

3. Bagdasaryan, Stratigraphy and Geological Correlation, v. 2, 1994.

4. Baker, Nature, v. 375, 1995., doi:https://doi.org/10.1038/375308a0

5. Baranov, Tectonophysics, v. 199, 1991., doi:https://doi.org/10.1016/0040-19519190174-Q

6. Barker, Geology, v. 4, 1976., doi:https://doi.org/10.1130/0091-761319764lt;596:GOTLAAgt;2.0.CO;2

7. Barker, Geol. Soc. Am. Bull., v. 87, 1976., doi:https://doi.org/10.1130/0016-7606197687lt;189:TTBTOSgt;2.0.CO;2

8. Barker, Alaska and British Columbia. Am. Mineral, v. 71, 1986.

9. Batanova, Geotektonika, v. 2, 1992.

10. Batanova, Proc. 29th Int't. Geol. Congr., D, 1994.

11. Bogdanov, Tectonics of the Deep Basins of Marginal Seas, 1988.

12. Bogdanov, Tectonic map of northeastern Asia scale 1:5000000, 1992.

13. Bogdanov, Tectonics and Geodynamics of Northeastern Asia Explanatory notes to the Tectonic Map of Northeastern Asia, scale 1:5000000, 1993.

14. Bogdanov, Explanatory Notes to the Tectonic Map of the Okhotsk Sea Region 1: 2500000, 2000.

15. Bogdanov, Tectonic Map of the Okhotsk Sea Region 1 : 2500000, 2000.

16. Bogdanov, Geology of Southern Koryak Highland, 1987.

17. Brandon, Am. J. Sci., v. 292, 1992.

18. Brandon, Radiation Measurements, v. 26, 1996., doi:https://doi.org/10.1016/S1350-44879782880-6

19. Brandon, Am. J. Sci., v. 292, 1992.

20. Castro, Earth Sci. Review, v. 31, 1991., doi:https://doi.org/10.1016/0012-82529190020-G

21. Chamov, Lithology and Mineral Resources, v. 31, 1996.

22. Chappell, Pacif. Geol., v. 8, 1974.

23. Chekhovich, Geology of the Western Bering Sea Region, 1990.

24. Coleman, J. Geophys. Res., v. 80, 1975.

25. Condie, Chem. Geol., v. 103, 1993., doi:https://doi.org/10.1016/0009-25419390140-E

26. Crawford, J. Volcanol. Geothem. Res., v. 44, 1990., doi:https://doi.org/10.1016/0377-02739090008-4

27. Dolmatov, Doclady Earth Sciences, v. 187, 1969.

28. Dymond, Geol. Society of America, v. 154, 1981.

29. England, J. Petrol, v. 25, no. 4, 1984.

30. Ewart, J. Petrol., v. 28, 1987.

31. Falloon, Earth Planet. Sci. Lett., v. 152, 1997., doi:https://doi.org/10.1016/S0012-821X9700155-6

32. Filatova, Periocenic volcanic belts, 1988.

33. Floyd, J. Geol. Soc. London, v. 144, 1987.

34. Garver, Geol. Soc. Amer. Bull., v. 106, 1994., doi:https://doi.org/10.1130/0016-76061994106lt;1398:EDOTBCgt;2.3.CO;2

35. Garver, GSA Bulletin, v. 107, 1995., doi:https://doi.org/10.1130/0016-76061995107lt;0440:TEISAIgt;2.3.CO;2

36. Garver, J. of Sedimentary Research, v. 66, 1996.

37. Garver, Fission-track analysis: theory and application, edited by S. Martin and R. Polino, Memorie di Scienze Geologiche, 51/2, 1999.

38. Garver, Phys. Chem. Earth A, v. 25, 2000., doi:https://doi.org/10.1016/S1464-18950000086-7

39. Garver, VII Zonenshain International Conference on Plate Tectonics, 2001.

40. Gleadow, Earth Planet. Sci. Lett., v. 33, 1976., doi:https://doi.org/10.1016/0012-821X7690235-1

41. Gorton, The Canadian Mineralogist, v. 38, 2000., doi:https://doi.org/10.2113/gscanmin.38.5.1065

42. Harris, Collision Tectonics, Geological Society Special Publications, 19, edited by M. P. Coward and A. C. Ries, 1986.

43. Hochstaedter, J. Geol., v. 102, 1994.

44. Hofmann, Earth Planet. Sci. Lett., v. 90, 1988., doi:https://doi.org/10.1016/0012-821X8890132-X

45. Kepezhinskas, Geology of the Pacific ocean, v. 1, 1991.

46. Kepezhinskas, Geochemistry International, v. 4, 1991.

47. Kepezhinskas, Mineralogical Magazine, v. 57, 1993., doi:https://doi.org/10.1180/minmag.1993.057.389.02

48. Kravchenko-Berezhnoy, Ofioliti, v. 16, 1991.

49. Ledneva, Petrology, v. 8, 2000.

50. Lin, J. Geophys. Res., v. 94, 1989.

51. Martin, Geology, v. 14, 1986., doi:https://doi.org/10.1130/0091-7613198614lt;753:EOSAGGgt;2.0.CO;2

52. Martin, Lithos, v. 30, 1993., doi:https://doi.org/10.1016/0024-49379390046-F

53. McLennan, Processes controlling the composition of clastic sediments, Geol. Soc. Amer. Spec. Paper, 284, edited by M. J. Johnsson and A. Basu, 1993.

54. Naeser, Lectures in Isotope Geology, edited by E. Jager and J. C. Hunziker, 1979.

55. Naeser, Nucl. Tracks Radiat. Meas., v. 13, 1987.

56. O'Conner, U.S. Geol. Sur. Prof. Pap, v. 525B, 1965.

57. Pearce, J. Petrol., v. 25, 1984.

58. Peccerillo, Contrib. Miner. Petrol., v. 58, 1976., doi:https://doi.org/10.1007/BF00384745

59. Puzankov, Transactions of the Institute of Geology and Geophysics of USSR Academy of Sciences, Geochemical Typification of Igneous and Metamorphic Rocks of Kamchatka, vol. 390, edited by A. P. Krivenko, 1990.

60. Robinson, Earth Planet. Sci. Lett., v. 155, 1998., doi:https://doi.org/10.1016/S0012-821X9700162-3

61. Rozen, Geochemistry International, v. 39, 2001.

62. Rozen, Razvedka i Okhrana nedr, no. 1, 1994.

63. Rubenstone, Geology and geochemistry of early Tertiary submarine volcanic rocks of the Aleutian Islands and their bearing on the development of the Aleutian Island Arc, 1984.

64. Seliverstov, Structure of the Floor of Kamchatka-Related Waters and Geodynamic of Articulation Zone of the Kuril-Kamchatka and Aleutian Island Arcs, 1998.

65. Shantser, Transactions of the Geological Institute of the Russian Academy of Sciences, The Lower Paleogene of Western Kamchatka Stratigraphy, Paleontology, Geological Events vol. 148, edited by Yu. G. Leonov et al., 1997.

66. Shapiro, Bulletin of Moscow Society of Naturalists, Geology series, v. 59, no. 5, 1984.

67. Shapiro, Geology of the Pacific ocean, no. 1, 1985.

68. Shapiro, Geology of the Pacific ocean, no. 19, 2000.

69. Shapiro, Stratigraphy and geological correlation, v. 12, no. 2, 2004.

70. Shipilov, Izv. AN SSSR. Ser. Geology, v. 1, 1988.

71. Soloviev, Doklady Earth Sciences, v. 361, 1998.

72. Soloviev, The Island Arc, v. 11, 2002., doi:https://doi.org/10.1046/j.1440-1738.2002.00353.x

73. Stcherbinina, Stratigraphy and Geological correlation, v. 5, 1997.

74. Stolper, J. Petrol., v. 74, 1980.

75. Sukhov, Izv. AN SSSR. Ser. Geology, v. 10, 1983.

76. Taylor, The Continental Crust: its Composition and Evolution An examination of geochemical record preserved in sedimentary rocks, 1985.

77. Wagner, Fission-Track Dating, 1992.

78. White, Tectonophysics, v. 43, 1977., doi:https://doi.org/10.1016/0040-19517790003-8

79. Wyllie, Can. J. Earth Sci., v. 13, 1976.

80. Yagodzinski, Geol. Soc. Am. Bull., v. 107, 1995., doi:https://doi.org/10.1130/0016-76061995107lt;0505:MAITWAgt;2.3.CO;2

81. Yudovich, Regional geochemistry of sedimentary deposits, 1981.

Login or Create
* Forgot password?