CONTINUOUS RECORD OF GEOMAGNETIC FIELD VARIATIONS DURING COOLING OF THE MONCHEGORSK, KIVAKKA AND BUSHVELD EARLY PROTEROZOIC LAYERED INTRUSIONS
Abstract and keywords
Abstract (English):
A continuous record of the geomagnetic field direction during of cooling of the Monchegorsk 2.5Ga, Kivakka 2.45Ga and Bushveld 2.06Ga layered intrusions was conducted for the first time. The low-Ti titanomagnetites Tc = 530-580o C are the main natural remanent magnetization NRM carriers. The high temperature NRM component according to petromagnetic characteristics is thermoremanent and was acquired at the cooling phase of the intrusion. The magnetic grains above 540o C are close to a single-domain state. The temperature versus time and cooling velocity versus temperature and time dependences during cooling of intrusions were calculated on the basis of solution of the Stefan problem and the nonstationary heat conduction problem. The geothermal gradient value was taken as 20okm-1. The unblocking temperatures in the course of thermal demagnetization of samples Td and the blocking temperatures during cooling from high temperatures Tb rate dependences were used for conversion of the Td to Tb Dodson and McClelland, 1980. A detailed thermal demagnetization at 2o-3o interval from 530oC up to 580oC was made and a pattern of behavior of the geomagnetic field direction was obtained afor the time of "running'' the Curie points over the section and bfor the cooling time of the intrusion at each sampling point from Tb = 580oC. A wavelet analysis has been used to study the field variation etc. The main rhythms of the direction variation spectrum are 3-4.5, 5-7, 8-10, 12, 15-17, 19-20, 30-40, 50-60, and 90-100kyr and they change in time. The length of rhythms is different and ranges from 1-2 oscillations "splashes'' up to 10-12. The Monchegorsk intrusion. The pole 265.3o E, 1.3o N. The length of record is ~70kyr. The geomagnetic excursion of the reversal polarity lasting for less than 2000 years and the R-subchron of ~60kyr were recorded. Kivakka intrusion. The A1 prefolded and A2 synfolded components which occurred at the stage of cooling of the intrusion are isolated. The body started to tilt approximately 85kyr after intrusion emplacement and it lasted for 20-25kyr. The pole of the A1 is 17.8oS and 247oE. Duration of the record is 35kyr and only one R-polarity existed during this period. Bushveld intrusion. Orientation of the horizontal plane of the samples has been restored from viscous magnetization and a paleomagnetic pole 12oN, 35.4oE has been determined from a high-temperature N-component of the NRM. A paleomagnetic record for ~500kyr was obtained; polarity of the field has changed only once during this period.

Keywords:
geomagnetic field variations, layered intrusions, titanomagnetites, petromagnetic characteristics, Monchegorsk.
Text
Text (PDF): Read Download
References

1. Amelin, Precambrian Res., v. 75, 1995., doi:https://doi.org/10.1016/0301-92689500015-W

2. Amelin, Contrib. Mineral. Petrol., v. 124, 1996., doi:https://doi.org/10.1007/s004100050190

3. Balashov, Precambrian Res., v. 64, 1993., doi:https://doi.org/10.1016/0301-92689390076-E

4. Berk, Recent history of the Earth, 1980.

5. Buchanan, Earth Planet. Sci. Lett., v. 155, 1998., doi:https://doi.org/10.1016/S0012-821X9700216-1

6. Buick, J. Geol. Soc. London, v. 158, no. 1, 2001.

7. Buiko, Stratigraphy, Geologic correlation, v. 3, no. 4, 1995.

8. Cawthorn, J. Petrol., v. 39, no. 9, 1998., doi:https://doi.org/10.1093/petrology/39.9.1669

9. Chui, An Introduction to Wavelets, 1992.

10. Coe, Earth Planet. Sci. Lett., v. 92, 1989., doi:https://doi.org/10.1016/0012-821X8990053-8

11. Coe, Nature, v. 374, 1995., doi:https://doi.org/10.1038/374687a0

12. Crouzet, Geophys. J. Int., v. 145, 2001., doi:https://doi.org/10.1046/j.0956-540x.2001.01423.x

13. Crouzet, Geophys. J. Int., v. 146, 2001., doi:https://doi.org/10.1046/j.0956-540x.2001.01478.x

14. Crouzet, Geophys. J. R. Astron. Soc., v. 53, 1978.

15. Daubechies, no. 61 in CBMS-NSF Series in Applied Mathematics, 1992.

16. Day, Phys. Earth Planet. Inter., v. 13, 1977., doi:https://doi.org/10.1016/0031-92017790108-X

17. Dodson, Geophys. J. R. Astron. Soc., v. 53, 1978.

18. Dodson, J. Geophys. Res., v. 85, 1980.

19. Dudarev, Heat Exchange in Magmatogene Processes, 1972.

20. Dunlop, J. Geophys. Res., v. 107, no. B3, 2002., doi:https://doi.org/10.1029/2001JB000487

21. Eales, Layered intrusions, edited by R. G. Cawthorn, 1996.

22. Ein, Materials of the conference "Riftogenesis magmatism and metallogeny of Pre-Cambrian, Correlation of geological complexes of Fennoscandia'', 2000.

23. Elming, Tectonophysics, v. 223, 1993., doi:https://doi.org/10.1016/0040-19519390137-9

24. Engelbrecht, S. Afr. J. Geol., v. 93, no. 2, 1990.

25. Enkin, A computer program package for analysis and presentation of palaeomagnetic data, 1994.

26. Hardle, Applied nonparametric regression, 1989.

27. Hattingh, Earth Planet. Sci. Lett., v. 79, 1986., doi:https://doi.org/10.1016/0012-821X8690199-8

28. Hattingh, Tectonophysics, v. 124, 1986., doi:https://doi.org/10.1016/0040-19518690205-2

29. Hattingh, Tectonophysics, v. 165, 1989., doi:https://doi.org/10.1016/0040-19518990042-5

30. Hattingh, Precambrian Res., v. 69, 1994., doi:https://doi.org/10.1016/0301-92689490088-4

31. Khramov, Fizika Zemli, no. 6, 1997.

32. Khvorov, Geokhimiya, no. 8, 2003.

33. Khvorov, Obschie problemy petrologii, no. 1, 2000.

34. Kogarko, Alkaline rocks and carbonatites of the world, Pt 2: Former USSR, 1995.

35. Koptev-Dvornikov, Petrologia, v. 9, 2001.

36. Kozlov, Natural Series of Nickel Bearing Intrusions and Their Metallogeny, 1973.

37. Krasnova, Precambrian Res., v. 74, 1995., doi:https://doi.org/10.1016/0301-92689500005-P

38. Lavrov, Pre-Cambrian ultrabasites and layered peridotite-gabbro-norite intrusions of the Northern Karelia, 1979.

39. Levchenkov, Stratigrafia, Geologicheskaya korrelatsia, no. 1, 1994.

40. Mallat, A wavelet tour of signal processing, 1998.

41. Mertanen, Geol. Surv. Finland, Espoo, 1995.

42. Mertanen, Geol. Surv. Finland, v. 347, 1989.

43. Mertanen, Precambrian Res., v. 98, 1999., doi:https://doi.org/10.1016/S0301-92689900050-9

44. Nguen, Izv. AN SSSR, Fizika Zemli, no. 8, 1985.

45. Nguen, Izv. AN SSSR, Fizika Zemli, no. 5, 1987.

46. Pechersky, Fizika Zemli, no. 6, 2002.

47. Pechersky, Fizika Zemli, no. 5, 2004.

48. Pullaiah, Earth Planet. Sci. Lett., v. 28, 1975., doi:https://doi.org/10.1016/0012-821X7590221-6

49. Rochette, Geophys. J. Int., v. 108, 1992., doi:https://doi.org/10.1111/j.1365-246X.1992.tb04630.x

50. Saltikova, Deep fractures in the Paanajarvi--Kuusamo--Kuolajarvi area, Geological Survey of Finland, no. 13, edited by A. Silvennoinen, 1991.

51. Scherbakov, Fizika Zemli, no. 5, 2002.

52. Schoenberg, Mineral. Mag, v. 62A, 1998.

53. Sharkov, Petrology of the layered intrusions, 1980.

54. Sharkov, Petrologia, v. 5, 1997.

55. Sholpo, Use of the rock magnetism when solving geological problems, 1977.

56. Silvennoinen, Deep fractures in the Paanaj#xE4;rvi--Kuusamo--Kuolaj#xE4;rvi area, Geol. Survey of Finland, no. 13, edited by A. Silvennoinen, 1991.

57. Thermal field..., Thermal field of the Europe, 1982.

58. Tikhonov, Mathematical physics equations, 1966.

59. Turcotte, Geodynamics, 1985.

60. Valet, J. Geophys. Res., v. 103, 1998., doi:https://doi.org/10.1029/97JB03544

61. Wager, Igneous rocks, 1970.

62. Williams, J. Geophys. Res., v. 87, 1982.

Login or Create
* Forgot password?