Variation of Total Electron Content over Nepal during Geomagnetic Storms: GPS Observations
Abstract and keywords
Abstract (English):
Geomagnetic storms have very profound effects on the Total Electron Content (TEC) of the ionosphere. In order to investigate the equatorial and low-latitude ionospheric response to the geomagnetic storms of varying intensities, a detailed study of vertical TEC (VTEC) variations resulting from Global Positioning System (GPS) data acquired at four GPS stations in Nepal along 80°–90° E longitude and 26°–30° N latitude sector has been carried out in the present work. The results were analyzed with other favorable inducing factors (solar wind parameters and geomagnetic indices) affecting TEC to constrain the causative factor. Positive phases are observed for all the storms studied. During the severe geomagnetic activity, the deviation was ~18 TECU, while it was recorded ~12 TECU and ~8 TECU during moderate and minor geomagnetic activity, respectively. The Detrended Cross-Correlation Analysis (DXA) illustrates that the value of the hourly average VTEC of the BESI station was found to have a strong positive correlation with other stations in all types of storm events, indicating a similar response of all stations towards the space weather events. In addition, the correlation of VTEC with solar wind parameters and geomagnetic indices illustrated that the VTEC shows a strong positive association with solar wind velocity (Vsw) in all three geomagnetic events. In contrast, the correlation of plasma density (Nsw), interplanetary magnetic field (IMF-Bz), the symmetric horizontal component of geomagnetic field (SYM-H), and Geomagnetic Auroral Electrojet (AE) index with VTEC vary with the intensity of the storm. Overall results of the study have revealed the characteristic features of TEC variation over Nepal regions during magnetic storms, which validates earlier research on ionospheric responses to geomagnetic storms and theoretical assumptions.

Keywords:
Total Electron Content (TEC), GPS, Geomagnetic storm, Solar wind parameters, Cross-correlation
Text
Publication text (PDF): Read Download
References

1. Abdu, M. A. (2005), Equatorial ionosphere-thermosphere system: Electrodynamics and irregularities, Advances in Space Research, 35(5), 771-787, https://doi.org/10.1016/j.asr.2005.03.150.

2. Abdu, M. A., J. W. MacDougall, I. S. Batista, J. H. A. Sobral, and P. T. Jayachandran (2003), Equatorial evening prereversal electric field enhancement and sporadic E layer disruption: A manifestation of E and F region coupling, Journal of Geophysical Research, 108(A6), 1-13, https://doi.org/10.1029/2002JA009285.

3. Adebesin, B. O., and S. O. Ikubanni (2011), An Empirical Study into the Plasma Flow Speed Geoeffectiveness during different Geomagnetic Activities, Continental Journal Applied Sciences, 6(3), 62-70.

4. Adhikari, B., S. Dahal, N. Sapkota, P. Baruwal, B. Bhattarai, K. Khanal, and N. P. Chapagain (2018), Field-aligned current and polar cap potential and geomagnetic disturbances: A review of cross-correlation analysis, Earth and Space Science, 5(9), 440-455, https://doi.org/10.1029/2018EA000392.

5. Adhikari, B., B. Kaphle, N. Adhikari, S. Limbu, A. Sunar, R. K. Mishra, and S. Adhikari (2019), Analysis of cosmic ray, solar wind energies, components of Earth’s magnetic field, and ionospheric total electron content during solar superstorm of November 18-22, 2003, SN Applied Sciences, 1(5), 1-6, https://doi.org/10.1007/s42452-019-0474-8.

6. Akintufede, E., L. Olatunbosun, A. Olabode, A. Babinisi, and E. Ariyibi (2017), Total Electron Content Variations during Different Geomagnetic Activities in Ile-Ife, Nigeria, Canadian Journal of Pure and Applied Sciences, 11(1), 4141-4149.

7. Ali, O. H., N. Zaourar, R. Fleury, and C. Amory-Mazaudier (2021), Transient variations of vertical total electron content at low latitude during the period 2013-2017, Advances in Space Research, 68(12), 4857-4871, https://doi.org/10.1016/j.asr.2021.02.039.

8. Anderson, D. N., and J. A. Klobuchar (1983), Modeling the total electron content observations above Ascension Island, Journal of Geophysical Research, 88(A10), 8020-8024, https://doi.org/10.1029/JA088iA10p08020.

9. Berdermann, J., M. Kriegel, D. Banyś, F. Heymann, M. M. Hoque, V. Wilken, C. Borries, A. Heßelbarth, and N. Jakowski (2018), Ionospheric response to the X9.3 flare on 6 September 2017 and its implication for navigation services over Europe, Space Weather, 16(10), 1604-1615, https://doi.org/10.1029/2018sw001933 .

10. Bergeot, N., I. Tsagouri, C. Bruyninx, J. Legrand, J.-M. Chevalier, P. Defraigne, Q. Baire, and E. Pottiaux (2013), The influence of space weather on ionospheric total electron content during the 23rd solar cycle, Journal of Space Weather and Space Climate, 3, A25, https://doi.org/10.1051/swsc/2013047.

11. Bhattarai, N., N. P. Chapagain, and B. Adhikari (2016), Total Electron Content and Electron Density Profile Observations during Geomagnetic Storms using COSMIC Satellite Data, Discovery, 52(250), 1979-1990.

12. Blagoveshchensky, D. V., M. A. Sergeeva, and P. Corona-Romero (2019), Features of the magnetic disturbance on September 7-8, 2017 by geophysical data, Advances in Space Research, 64(1), 171-182, https://doi.org/10.1016/j.asr.2019.03.037.

13. Chapagain, N. P. (2016), Equatorial ionospheric plasma drifts velocities using radar observations, BIBECHANA, 14, 1-8, https://doi.org/10.3126/bibechana.v14i0.15405.

14. Ciraolo, L., F. Azpilicueta, C. Brunini, A. Meza, and S. M. Radicella (2007), Calibration errors on experimental slant total electron content (TEC) determined with GPS, Journal of Geodesy, 81(2), 111-120, https://doi.org/10.1007/s00190-006-0093-1.

15. Clilverd, M. A., C. J. Rodger, M. P. Freeman, J. B. Brundell, D. H. M. Manus, M. Dalzell, E. Clarke, A. W. P. Thomson, G. S. Richardson, F. MacLeod, and I. Frame (2021), Geomagnetically induced currents during the 07-08 September 2017 disturbed period: a global perspective, Journal of Space Weather and Space Climate, 11, 33, https://doi.org/10.1051/swsc/2021014.

16. Danilov, A. D. (2001), F2-region response to geomagnetic disturbances, Journal of Atmospheric and Solar-Terrestrial Physics, 63(5), 441-449, https://doi.org/10.1016/s1364-6826(00)00175-9.

17. Davies, K. (1990), Ionospheric Radio, 600 pp., Institution of Engineering and Technology, https://doi.org/10.1049/pbew031e.

18. de Abreu, A. J., I. M. Martin, P. R. Fagundes, K. Venkatesh, I. S. Batista, R. de Jesus, M. Rockenback, A. Coster, M. Gende, M. A. Alves, and M. Wild (2017), Ionospheric F-region observations over American sector during an intense space weather event using multi-instruments, Journal of Atmospheric and Solar-Terrestrial Physics, 156, 1-14, https://doi.org/10.1016/j.jastp.2017.02.009.

19. de Gonzalez, A. L. C., A. M. da Costa, and W. D. Gonzalez (2004), Ring current space-time inhomogeneities in intense geomagnetic storms, Geofisica Internacional, 43(2), 205-215, https://doi.org/10.22201/igeof.00167169p.2004.43.2.172.

20. Ding, F., W. Wan, B. Ning, and M. Wang (2007), Large-scale traveling ionospheric disturbances observed by GPS total electron content during the magnetic storm of 29-30 October 2003, Journal of Geophysical Research: Space Physics, 112(A6), 1-15, https://doi.org/10.1029/2006ja012013.

21. Dungey, J. W. (1961), Interplanetary magnetic field and the auroral zones, Physical Review Letters, 6(2), 47-48, https://doi.org/10.1103/PhysRevLett.6.47.

22. Fayose, R. S., R. Babatunde, O. Oladosu, and K. Groves (2012), Variation of Total Electron Content TEC and their effect on GNSS over Akure, Nigeria, Applied Physics Research, 4(2), 105-109, https://doi.org/10.5539/apr.v4n2p105.

23. Fejer, B. G. (2003), Low-latitude ionospheric disturbance electric field effects during the recovery phase of the 19-21 October 1998 magnetic storm, Journal of Geophysical Research, 108(A12), 1-10, https://doi.org/10.1029/2003ja010190.

24. Fejer, B. G., E. R. de Paula, R. A. Heelis, and W. B. Hanson (1995), Global equatorial ionospheric vertical plasma drifts measured by the AE-E satellite, Journal of Geophysical Research, 100(A4), 5769-5776, https://doi.org/10.1029/94ja03240.

25. Fuller-Rowell, T. J., M. V. Codrescu, R. J. Moffett, and S. Quegan (1994), Response of the thermosphere and ionosphere to geomagnetic storms, Journal of Geophysical Research, 99(A3), 3893-3914, https://doi.org/10.1029/93JA02015.

26. Gonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. M. Vasyliunas (1994), What is a geomagnetic storm?, Journal of Geophysical Research, 99(A4), 5771-5792, https://doi.org/10.1029/93ja02867.

27. Gonzalez, W. D., B. T. Tsurutani, and A. L. C. de Gonzalez (1999), Interplanetary origin of geomagnetic storms, Space Science Reviews, 88(3/4), 529-562, https://doi.org/10.1023/a:1005160129098.

28. Ho, C. M., A. J. Mannucci, L. Sparks, X. Pi, U. J. Lindqwister, B. D. Wilson, B. A. Iijima, and M. J. Reyes (1998), Ionospheric total electron content perturbations monitored by the GPS global network during two northern hemisphere winter storms, Journal of Geophysical Research: Space Physics, 103(A11), 26,409-26,420, https://doi.org/10.1029/98ja01237.

29. Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins (2012), Global positioning system: Theory and practice, 382 pp., Springer Vienna, https://doi.org/10.1007/978-3-7091-6199-9.

30. Hu, T., Y. Yao, and J. Kong (2021), Study of Spatial and Temporal Variations of Ionospheric Total Electron Content in Japan, during 2014-2019 and the 2016 Kumamoto Earthquake, Sensors, 21(6), 2156, https://doi.org/10.3390/s21062156.

31. Ikubanni, S. O., S. J. Adebiyi, B. O. Adebesin, and K. O. Dopamu (2018), Response of GPS-Tec in the African Equatorial Region to the Two Recent St. Patrick’s Day Storms, International Journal of Civil Engineering and Technology, 9(10), 1773-1790.

32. Immel, T. J., and A. J. Mannucci (2013), Ionospheric redistribution during geomagnetic storms, Journal of Geophysical Research: Space Physics, 118(12), 7928-7939, https://doi.org/10.1002/2013ja018919.

33. Jain, A., S. Tiwari, S. Jain, and A. K. Gwal (2010), TEC response during severe geomagnetic storms near the crest of equatorial ionization anomaly, Indian Journal of Radio & Space Physics, 39, 11-24.

34. Jankovičová, D., P. Dolinský, F. Valach, and Z. Vörös (2002), Neural network-based nonlinear prediction of magnetic storms, Journal of Atmospheric and Solar-Terrestrial Physics, 64(5-6), 651-656, https://doi.org/10.1016/s1364-6826(02)00025-1.

35. Kamide, Y., W. Baumjohann, I. A. Daglis, W. D. Gonzalez, M. Grande, J. A. Joselyn, R. L. McPherron, J. L. Phillips, E. G. D. Reeves, G. Rostoker, A. S. Sharma, H. J. Singer, B. T. Tsurutani, and V. M. Vasyliunas (1998), Current understanding of magnetic storms: Storm-substorm relationships, Journal of Geophysical Research: Space Physics, 103(A8), 17,705-17,728, https://doi.org/10.1029/98ja01426.

36. Kelly, M. C., M. N. Vlasov, J. C. Foster, and A. J. Coster (2004), A quantitative explanation for the phenomenon known as storm-enhanced density, Geophysical Research Letters, 31(19), 1-3, https://doi.org/10.1029/2004gl020875.

37. Krypiak-Gregorczyk, A. (2018), Ionosphere response to three extreme events occurring near spring equinox in 2012, 2013 and 2015, observed by regional GNSS-TEC model, Journal of Geodesy, 93(7), 931-951, https://doi.org/10.1007/s00190-018-1216-1.

38. Kumar, S., and S. Kumar (2020), Equatorial ionospheric TEC and scintillations under the space weather events of 4-9 September 2017: M-class solar flares and a G4 geomagnetic storm, Journal of Atmospheric and Solar-Terrestrial Physics, 209, 105,421, https://doi.org/10.1016/j.jastp.2020.105421.

39. Lei, J., F. Huang, X. Chen, J. Zhong, D. Ren, W. Wang, X. Yue, X. Luan, M. Jia, X. Dou, L. Hu, B. Ning, C. Owolabi, J. Chen, G. Li, and X. Xue (2018), Was magnetic storm the only driver of the long-duration enhancements of daytime total electron content in the Asian-Australian sector between 7 and 12 September 2017?, Journal of Geophysical Research: Space Physics, 123(4), 3217-3232, https://doi.org/10.1029/2017ja025166.

40. Li, W., J. Yue, Y. Yang, C. He, A. Hu, and K. Zhang (2018), Ionospheric and thermospheric responses to the recent strong solar flares on 6 September 2017, Journal of Geophysical Research: Space Physics, 123(10), 8865-8883, https://doi.org/10.1029/2018ja025700.

41. Liu, J. Y., Y. I. Chen, C. H. Chen, C. Y. Liu, C. Y. Chen, M. Nishihashi, J. Z. Li, Y. Q. Xia, K. I. Oyama, K. Hattori, and C. H. Lin (2009), Seimo-ionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7. 9 Wenchuan earthquake, Journal of Geophysical Research: Space Physics, 114(A4), 1-10, https://doi.org/10.1029/2008ja013698.

42. Liu, Y., Z. Li, L. Fu, J. Wang, and C. Zhang (2019), Studying the ionospheric responses induced by a geomagnetic storm in September 2017 with multiple observations in America, GPS Solutions, 24(1), 1-13, https://doi.org/10.1007/s10291-019-0916-1.

43. Mansilla, G. A. (2019), Behavior of total electron content over the Arctic and Antarctic sectors during several intense geomagnetic storms, Geodesy and Geodynamics, 10(1), 26-36, https://doi.org/10.1016/j.geog.2019.01.004.

44. Mendes, O., M. O. Domingues, A. M. da Costa, and A. L. C. de Gonzalez (2005), Wavelet analysis applied to magnetograms: Singularity detections related to geomagnetic storms, Journal of Atmospheric and Solar-Terrestrial Physics, 67(17-18), 1827-1836, https://doi.org/10.1016/j.jastp.2005.07.004.

45. Mendillo, M. (2006), Storms in the ionosphere: Patterns and processes for total electron content, Reviews of Geophysics, 44(4), 1-47, https://doi.org/10.1029/2005rg000193.

46. Nayar, S. R. P., V. N. Radhika, and P. T. Seena (2006), Investigation of substorms during geomagnetic storms using wavelet techniques, in Proceedings of the ILWS Workshop, pp. 19-24, Provided by the SAO/NASA Astrophysics Data System, Goa, India.

47. Otsuka, Y., T. Ogawa, A. Saito, T. Tsugawa, S. Fukao, and S. Miyazaki (2002), A new technique for mapping of total electron content using GPS network in Japan, Earth, Planets and Space, 54(1), 63-70, https://doi.org/10.1186/bf03352422.

48. Panda, S. K., S. S. Gedam, and S. Jin (2015), Ionospheric TEC Variations at low Latitude Indian Region, in Satellite Positioning - Methods, Models and Applications, pp. 149-174, InTech, Rijeka, Croatia, https://doi.org/10.5772/59988.

49. Podobnik, B., and H. E. Stanley (2008), Detrended cross-correlation analysis: a new method for analysing two nonstationary time series, Physical Review Letters, 100(8), 084,102, https://doi.org/10.1103/physrevlett.100.084102.

50. Podobnik, B., I. Grosse, D. Horvatić, S. Ilic, P. C. Ivanov, and H. E. Stanley (2009), Quantifying cross-correlations using local and global detrending approaches, The European Physical Journal B, 71(2), 243-250, https://doi.org/10.1140/epjb/e2009-00310-5.

51. Poudel, P., N. Parajuli, A. Gautam, D. Sapkota, H. Adhikari, B. Adhikari, A. Silwal, S. P. Gautam, M. Karki, and R. K. Mishra (2020), Wavelet and Cross-Correlation Analysis of Relativistic Electron Flux with Sunspot Number, Solar Flux, and Solar Wind Parameters, Journal of Nepal Physical Society, 6(2), 104-112, https://doi.org/10.3126/jnphyssoc.v6i2.34865.

52. Pulinets, S. A., A. Leyva-Contreras, G. Bisiacchi-Giraldi, and C. Ciraolo (2005), Total electron content variations in the ionosphere before the Colima, Mexico, earthquake of 21 January 2003, Geofisica Internacional, 44(4), 369-377, https://doi.org/10.22201/igeof.00167169p.2005.44.4.237.

53. Rastogi, R. G., and J. A. Klobuchar (1990), Ionospheric electron content within the equatorial F2 layer anomaly belt, Journal of Geophysical Research, 95(A11), 19,045-19,052, https://doi.org/10.1029/ja095ia11p19045.

54. Rostoker, G. (1972), Geomagnetic indices, Reviews of Geophysics, 10(4), 935-950, https://doi.org/10.1029/rg010i004p00935.

55. Schrijver, C. J., K. Kauristie, A. D. Aylward, C. M. Denardini, S. E. Gibson, A. Glover, N. Gopalswamy, M. Grande, M. Hapgood, D. Heynderickx, N. Jakowski, V. V. Kalegaev, G. Lapenta, J. A. Linker, S. Liu, C. H. Mandrini, I. R. Mann, T. Nagatsuma, D. Nandy, T. Obara, T. P. O’Brien, T. Onsager, H. J. Opgenoorth, M. Terkildsen, C. E. Valladares, and N. Vilmer (2015), Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS, Advances in Space Research, 55(12), 2745-2807, https://doi.org/10.1016/j.asr.2015.03.023.

56. Shadrina, L. P. (2017), Two types of geomagnetic storms and relationship between Dst and AE indexes, in E3S Web of Conferences, vol. 20, edited by B. Shevtsov, I. Myagkova, and V. Kozlov, p. 01010, EDP Sciences, https://doi.org/10.1051/e3sconf/20172001010.

57. Sharma, G., P. K. C. Ray, S. Mohanty, P. K. R. Gautam, and S. Kannaujiya (2017), Global navigation satellite system detection of preseismic ionospheric total electron content anomalies for strong magnitude (Mw< 6) Himalayan earthquakes, Journal of Applied Remote Sensing, 11(04), 046,018, https://doi.org/10.1117/1.jrs.11.046018.

58. Sharma, S., P. Galav, N. Dashora, S. Alex, R. S. Dabas, and R. Pandey (2011), Response of low-latitude ionospheric total electron content to the geomagnetic storm of 24 August 2005, Journal of Geophysical Research: Space Physics, 116(A5), https://doi.org/10.1029/2010ja016368.

59. Sharma, S. K., A. K. Singh, S. K. Panda, and S. S. Ahmed (2020), The effect of geomagnetic storms on the total electron content over the low latitude Saudi Arab region: a focus on St. Patrick’s Day storm, Astrophysics and Space Science, 365(2), 1-10, https://doi.org/10.1007/s10509-020-3747-1.

60. Shinbori, A., Y. Otsuka, T. Sori, T. Tsugawa, and M. Nishioka (2020), Temporal and spatial variations of total electron content enhancements during a geomagnetic storm on 27 and 28 September 2017, Journal of Geophysical Research: Space Physics, 125(7), 1-21, https://doi.org/10.1029/2019ja026873.

61. Silwal, A., S. P. Gautam, K. Chaudhary, M. Khanal, S. Joshi, S. Dangaura, and B. Adhikari (2021a), Study of Solar Wind Parameters During Geomagnetic Storm of 26th August 2018 and 28th September 2017, Thai Journal of Physics, 38(2), 54-68.

62. Silwal, A., S. P. Gautam, P. Poudel, M. Karki, B. Adhikari, N. P. Chapagain, R. K. Mishra, B. D. Ghimire, and Y. Migoya-Orue (2021b), Global positioning system observations of ionospheric total electron content variations during the 15 January 2010 and 21 June 2020 solar eclipse, Radio Science, 56(5), 1-20, https://doi.org/10.1029/2020rs007215.

63. Sori, T., A. Shinbori, Y. Otsuka, T. Tsugawa, and M. Nishioka (2019), Characteristics of GNSS total electron content enhancements over the midlatitudes during a geomagnetic storm on 7 and 8 November 2004, Journal of Geophysical Research: Space Physics, 124(12), 10,376-10,394, https://doi.org/10.1029/2019ja026713.

64. Sreeja, V., C. V. Devasia, S. Ravindran, T. K. Pant, and R. Sridharan (2009), Response of the equatorial and low-latitude ionosphere in the Indian sector to the geomagnetic storms of January 2005, Journal of Geophysical Research: Space Physics, 114(A6), 1-13, https://doi.org/10.1029/2009ja014179.

65. Tsugawa, T., M. Nishioka, M. Ishii, K. Hozumi, S. Saito, A. Shinbori, Y. Otsuka, A. Saito, S. M. Buhari, M. Abdullah, and P. Supnithi (2018), Total electron content observations by dense regional and worldwide international networks of GNSS, Journal of Disaster Research, 13(3), 535-545, https://doi.org/10.20965/jdr.2018.p0535.

66. Tsurutani, B., A. Mannucci, B. Iijima, M. A. Abdu, J. H. A. Sobral, W. Gonzalez, and V. M. Vasyliunas (2004), Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, Journal of Geophysical Research, 109(A8), 1-16, https://doi.org/10.1029/2003ja010342.

67. Usoro, A. E. (2015), Some basic properties of cross-correlation functions of n-dimensional vector time series, Journal of Statistical and Econometric Methods, 4(1), 63-71.

68. Vichare, G., R. Rawat, A. Hanchinal, A. K. Sinha, A. Dhar, and B. M. Pathan (2012), Seasonal evolution of S q current system at sub-auroral latitude, Earth, Planets and Space, 64(11), 1023-1031, https://doi.org/10.5047/eps.2012.04.007.

69. Yao, Y., X. Chen, J. Kong, C. Zhou, L. Liu, L. Shan, and Z. Guo (2021), An Updated Experimental Model of IG12 Indices Over the Antarctic Region via the Assimilation of IRI2016 With GNSS TEC, IEEE Transactions on Geoscience and Remote Sensing, 59(2), 1700-1717, https://doi.org/10.1109/tgrs.2020.2999132.

70. Yasyukevich, Y., E. Astafyeva, A. Padokhin, V. Ivanova, S. Syrovatskii, and A. Podlesnyi (2018), The 6 September 2017 X-class solar flares and their impacts on the ionosphere, GNSS, and HF radio wave propagation, Space Weather, 16(8), 1013-1027, https://doi.org/10.1029/2018sw001932.

71. Yokoyama, N., and Y. Kamide (1997), Statistical nature of geomagnetic storms, Journal of Geophysical Research: Space Physics, 102(A7), 14,215-14,222, https://doi.org/10.1029/97ja00903.

72. Zhang, W., X. Zhao, S. Jin, and J. Li (2018), Ionospheric disturbances following the March 2015 geomagnetic storm from GPS observations in China, Geodesy and Geodynamics, 9(4), 288-295, https://doi.org/10.1016/j.geog.2018.02.001.

Login or Create
* Forgot password?