GEODYNAMIC MODEL OF THE INTERACTION BETWEEN THE CONTINENTAL LITHOSPHERE AND THE ACTIVE CONTINENTAL MARGIN IN EAST ASIA
Abstract and keywords
Abstract (English):
We propose a concept for a geodynamic model of East Asia, taking into account the mechanism of the interaction between the stable part of the regional continental lithosphere and the active continental margin along the Kuril-Kamchatka and Japan island arcs. The concept involves upper mantle convection combined with keyboard-block mechanism explaining seismic cycle patterns in the active continental margin and provides grounds to resolve the paradoxes of the present-day velocity field observed by satellite geodesy methods. These paradoxes are associated with enormous variation in the velocity field, such as sometimes contradict directions of surface motions in the adjacent portions of the earth’s surface. We propose a model that attribute the observed motion pattern to the superposition of the long-term subduction-driven convection regime beneath the continent causing the ocean-ward lithosphere extension and the shorter-term cyclic motion of seismogenic blocks with alternating directions. The model contributes to the development of the physically-based theoretical concepts of modern plate tectonics and eliminates the contradictions between the observed data and classical plate tectonics in East Asia region.

Keywords:
East Asia, geodynamics, mantle convection, subduction, seismic cycles, largest earthquakes, satellite geodesy, modern surface displacements
Text
Publication text (PDF): Read Download
References

1. Apel, E. V., R. Burgmann, G. Steblov, N. Vasilenko, R. King, and A. Prytkov, Independent Active Microplate Tectonics of Northeast Asia From GPS Velocities and Block Modeling, Geophys. Res. Lett., 33, L11,303, doihttps://doi.org/10.1029/2006GL026077, 2006.

2. Argus, D. F., R. G. Gordon, and C. DeMets, Geologically Current Motion of 56 Plates Relative to the No-Net-Rotation Reference Frame, Geochem. Geophys. Geosyst., 12, Q11,001, doihttps://doi.org/10.1029/2011GC003751, 2011.

3. Ashurkov, S. V., V. A. Sankov, M. A. Serov, P. Y. Lukyanov, G. S. Bordonskii, N. N. Grib, and M. G. Dembelov, Evaluation of Present-Day Deformations in the Amurian Plate and its Surroundings, Based on GPS Data, Russian Geology and Geophysics, 57(11), 1626-1634, 2016.

4. Banerjee, P., and R. Bürgmann, Convergence Across the Northwest Himalaya from GPS Measurements, Geophysical Research Letters, 29(13), 1652, 2002.

5. Baranov, B. V., A. I. Ivanchenko, and K. A. Dozorova, The Great 2006 and 2007 Kuril Earthquakes, Forearc Segmentation and Seismic Activity of the Central Kuril Islands Region, Pure appl. geophys., 172(12), 3509- 3535, 2015.

6. Bird, P., An Updated Digital Model of Plate BSoundaries, Geochem. Geophys. Geosyst., 4(3), 1-52, 2003.

7. Bürgmann, R., M. G. Kogan, G. M. Steblov, G. Hilley, V. E. Levin, and E. Apel, Interseismic Coupling and Asperity Distribution Along Kamchatka Subduction Zone, J. Geophys. Res., 110(B7), 1-17, doihttps://doi.org/10.1029/2005JB003648, 2005.

8. Calais, E., L. Dong, M. Wang, Z. Shen, and M. Vergnolle, Continental Deformation in Asia from a Combined GPS Solution, Geophysical Research Letters, 33, L24,319, 2006.

9. Cook, D., K. Fujita, and C. Mcmullen, Present-Day Plate Interactions in Northeast Asia-North-American, Eurasian, and Okhotsk Plates, Journal of Geodynamics, 6, 33-51„ doihttps://doi.org/10.1016/0264-3707(86)90031-1., 1986.

10. DeMets, C., Oblique Convergence and Deformation Along the Kuril and Japan Trenches, J. Geophys. Res., 97 (B12), 17,615-17,625, doihttps://doi.org/10.1029/92JB01306, 1992.

11. DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Effect of Recent Revisions to the Geomagnetic Reversal Time Scale on Estimates of Current Plate Motions, Geophys Res. Lett., 21(20), 2191-2194, doihttps://doi.org/10.1029/94GL02118, 1994.

12. Dziewonski, A., T.-A. Chou, and J. Woodhouse, Determination of Earthquake Source Parameters from Waveform Data for Studies of Gobal and Regional Seismicity, Journal of Geophysical Research, 86, 2825-2852, doihttps://doi.org/10.1029/JB086iB04p02825, 1981.

13. Ekström, G., M. Nettles, and A. Dziewonski, The Global CMT Project 2004-2010: Centroid-Moment Tensors for 13,017 Earthquakes, Physics of the Earth and Planetary Interiors, 200-201, 1-9, doihttps://doi.org/10.1016/j.pepi.2012.04.002., 2012.

14. England, P., and P. Molnar, Late Quaternary to Decadal Velocity Fields in Asia, J. Geophys. Res., 110, B12,401, doihttps://doi.org/10.1029/2004JB003541, 2005.

15. Fedotov, S. A., The Seismic Cycle, Possibility of the Quantitative Seismic Zoning, and Long-Term Seismic Forecasting, in Seismic Zoning in the USSR, edited by S. V. Medvedev, pp. 133-166, Moscow, (in Russian), Nauka, 1968.

16. GS RAS, On-line Catalog “Earthquakes of Russia”, Geophysical Survey of the Russian Academy of Sciences, 2021.

17. Hindle, D., K. Fujita, and K. Mackey, Deformation of the Northwestern Okhotsk Plate: How it is Happening?, Stephan Mueller Spec. Publ. Ser., 4, 147-156, doihttps://doi.org/10.5194/SMSPS-4-147-2009, 2009.

18. Imaeva, L. P., G. S. Gusev, V. S. Imaev, S. V. Ashurkov, V. I. Melnikova, and A. I. Seredkina, Geodynamic Activity of Modern Structures and Tectonic Stress Fields in Northeast Asia, Geodynamics & Tectonophysics, 8(4), 737-768, doihttps://doi.org/10.5800/GT-2017-8-4-0315, 2017.

19. ISC, On-line Bulletin, International Seismological Centre, doihttps://doi.org/10.31905/D808B830, 2021.

20. Kerchman, V. I., and L. I. Lobkovsky, Numerical Simulation of the Seismotectonic Process in Island Arcs and at Active Continental Margins, Izvestiya Physics of the Solid Earth, 3, 13-27, 1988.

21. Kirdyashkin, A. A., N. L. Dobretsov, and A. G. Kirdyashkin, Experimental Modeling of the Effect of Subduction on the Spatial Structure of Convective Flows in the Asthenosphere under the Continent, Doklady Earth Sciences, 384(5), 682-686 (in Russian), 2002.

22. Kogan, M. G., R. Burgmann, N. F. Vasilenko, C. H. Scholz, R. W. King, A. I. Ivashchenko, D. I. Frolov, G. M. Steblov, C. Kim, and S. G. Egorov, The 2000 Mw 6.8 Uglegorsk Earthquake and Regional Plate Boundary Deformation of Sakhalin from Geodetic Data, Geophys. Res. Lett., 30(3), 1102, doihttps://doi.org/10.1029/2002GL016399, 2003.

23. Kogan, M. G., D. I. Frolov, N. F. Vasilenko, J. T. Freymueller, G. M. Steblov, G. Ekström, N. N. Titkov, and A. S. Prytkov, Plate Coupling and Strain in the Far Western Aleutian Arc Modeled from GPS Data, Geophys. Res. Lett., 44, 3176-3183, doihttps://doi.org/10.1002/2017GL072735, 2017.

24. Kreemer, C., W. Holt, and A. Haines, An integrated global model of present-day plate motions and plate boundary deformation, Geophysical Journal International, 154(1), 8-34„ doihttps://doi.org/10.1046/j.1365-246X.2003.01917.x, 2003.

25. La Femina, P. C., T. Dixon, and W. Strauch, Bookshelf Faulting in Nicaragua, Geology, 30(8), 751-754, doihttps://doi.org/10.1130/0091-7613(2002)030<0751:BFIN>2.0.CO;2, 2002.

26. Laverov, N. P., L. I. Lobkovsky, M. V. Kononov, N. L. Dobretsov, V. A. Vernikovsky, S. D. Sokolov, and E. V. Shipilov, A Geodynamic Model of the Evolution of the Arctic Basin and Adjacent Territories in the Mesozoic and Cenozoic and the Outer Limit of the Russian Continental Shelf, Geotectonics, 1, 1-30, doihttps://doi.org/10.1134/S0016852113010044, 2013.

27. Levin, B. W., B. Fitzhugh, J. Bourgeois, A. V. Rybin, N. G. Razzhigaeva, A. B. Belousov, N. F. Vasilenko, A. S. Prytkov, D. I. Frolov, T. I. Nushko, A. A. Kharlamov, and I. G. Koroteev, A Complex Expedition to the Kuril Islands in 2006. (1 Stage), Vestnik of Far Eastern Branch of Russian Academy of Sciences, 1, 14400,148 (in Russian), 2007.

28. Lobkovsky, L. I., Deformable Plate Tectonics and Regional Geodynamic Model of the Arctic Region and Northeastern Asia, Russian Geology and Geophysics, 57(3), 371-386, 2016.

29. Lobkovsky, L. I., and M. M. Ramazanov, Investigation of Upper Mantle Convection Thermomechanically Related to a Subduction Zone, and its Geodynamic Applications for the Arctic and Northeast Asia, Fluid Dynamics, 3, 139-150, (in Russian), doihttps://doi.org/10.1134/S001546282103006X, 2021.

30. Lobkovsky, L. I., V. I. Kerchman, B. V. Baranov, and E. I. Pristavakina, Analysis of Seismotectonic Processes in Subduction Zones from the Standpoint of a Keyboard Model of Great Earthquakes, Tectonophysics, 199, 211-236, doihttps://doi.org/10.1016/0040-1951(91)90173-P, 1991.

31. Lobkovsky, L. I., E. V. Shipilov, and M. V. Kononov, Geodynamic Model of Upper Mantle Convection and Transformations of the Arctic Lithosphere in the Mesozoic and Cenozoic, Izvestiya of the Physics of the Solid Earth, 49, 767-785, doihttps://doi.org/10.1134/S1069351313060104, 2013.

32. Lobkovsky, L. I., I. S. Vladimirova, Y. V. Gabsatarov, B. V. Baranov, I. A. Garagash, and G. M. Steblov, Seismotectonic Deformations Associated with the 2010 Maule Earthquake at Different Stages of the Seismic Cycle According to Satellite Geodetic Observations, Dokl. Earth Sci., 477, 716-721, doihttps://doi.org/10.1134/S1028334X17120261, 2017a.

33. Lobkovsky, L. I., I. S. Vladimirova, Y. V. Gabsatarov, I. A. Garagash, B. V. Baranov, and G. M. Steblov, Post-Seismic Motions After the 2006-2007 Simushir Earthquakes at Different Stages of the Seismic Cycle, Dokl. Earth Sci., 473, 375-379, doihttps://doi.org/10.1134/S1028334X17030266, 2017b.

34. Lobkovsky, L. I., I. S. Vladimirova, Y. V. Gabsatarov, and G. M. Steblov, Seismotectonic Deformations Related to the 2011 Tohoku Earthquake at Different Stages of the Seismic Cycle on the Basis of Satellite Geodetic Observations, Dokl. Earth Sci., 481, 1060-1065, 2018.

35. Lobkovsky, L. I., M. M. Ramazanov, and V. D. Kotelkin, Convection Related to Subduction Zone and Application of the Model to Investigate the CretaceousCenozoic Geodynamics of Central East Asia and the Arctic, Geodynamics & Tectonophysics, 12(3), 455-470, (in Russian), doihttps://doi.org/10.5800/GT-2021-12-3-0533, 2021a.

36. Lobkovsky, L. I., I. S. Vladimirova, D. A. Alekseev, and Y. Gabsatarov, Two-Element Keyboard Model of Strongest Subduction Earthquakes Generation, Dokl. Earth Sci., 496, 72-75, doihttps://doi.org/10.1134/S1028334X2101013X, 2021b.

37. Lobkovsky, L. I., I. S. Vladimirova, Y. V. Gabsatarov, and D. A. Alekseev, Keyboard Model of Seismic Cycle of Great Earthquakes in Subduction Zones: Simulation Results and Further Generalization, Appl. Sci., 11, 9350, doihttps://doi.org/10.3390/app11199350, 2021c.

38. Loveless, J. P., and B. J. Meade, Geodetic Imaging of Plate Motions, Slip Rates, and Partitioning of Deformation in Japan, J. Geophys. Res., 115, B02,410, doihttps://doi.org/10.1029/2008JB006248, 2010.

39. Lu, Y., J. Li, L. Liu, and L. Zhao, Complex Uppermost Mantle Structure and Deformation Beneath the Northwest Pacific Region, J. Geophys. Res., 124(7), 6866-6879, doihttps://doi.org/10.1029/2019JB017356, 2019.

40. Lukhnev, A. V., V. A. San’kov, A. I. Miroshnichenko, S. V. Ashurkov, and E. Calais, GPS Rotation and Strain Rates in the Baikal-Mongolia Region, Russian Geology and Geophysics, 51(7), 785-793, doihttps://doi.org/10.1016/J.RGG.2010.06.006, 2010.

41. Molnar, P., and P. Tapponnier, Active Tectonics of Tibet, J. Geophys. Res., 83(B11), 5361-5375, doihttps://doi.org/10.1029/JB083IB11P05361, 1978.

42. Sagiya, T., S. Miyazaki, and T. Tada, Continuous GPS Array and Present-Day Crustal Deformation of Japan, Pure appl. geophys., 157, 2303-2322, doihttps://doi.org/10.1007/PL00022507, 2000.

43. Sankov, V. A., A. V. Lukhnev, A. I. Miroshnitchenko, A. A. Dobrynina, S. V. Ashurkov, L. M. Byzov, M. G. Dembelov, E. Calais, and J. Déverchère, Contemporary Horizontal Movements and Seismicity of the South Baikal Basin (Baikal Rift System), Izvestiya Physics of the Solid Earth, 50(6), 785-794, doihttps://doi.org/10.1134/S106935131406007X, 2014.

44. Savostin, L. A., A. I. Verzhbitskaya, and B. V. Baranov, Modern Tectonics of the Okhotsk Sea Region, Doklady AN SSSR, 266(4), 961-965 (in Russian), 1982.

45. Sella, G. F., T. H. Dixon, and A. Mao, REVEL: A Model for Recent Plate Velocities from Space Geodesy, J. Geophys. Res., 107(B4), doihttps://doi.org/10.1029/2000JB000033, 2002.

46. Seno, T., T. Sakurai, and S. Stein, Can the Okhotsk Plate be Discriminated from the North American Plate?, J. Geophys. Res., 101(B5), 11,305-11,315, 1996.

47. Shen, Z. K., C. Zhao, A. Yin, Y. Li, D. D. Jackson, P. Fang, and D. Dong, Contemporary Crustal Deformation in East Asia Constrained by Global Positioning System Measurements, J. Geophys. Res., 105(B3), 5721-5734, doihttps://doi.org/10.1029/1999JB900391, 2000.

48. Shen, Z. K., M. Wang, Y. Li, D. D. Jackson, A. Yin, D. Dong, and P. Fang, Crustal Deformation Along the Altyn Tagh Fault System, Western China, from GPS, J. Geophys. Res., 106(12), 30,607-30,621, doihttps://doi.org/10.1029/2001JB000349, 2001.

49. Shestakov, N. V., M. D. Gerasimenko, A. G. Kolomiets, G. N. Gerasimov, H. Takahashi, M. Kasahara, V. A. Bormotov, V. G. Bykov, N. F. Vasilenko, A. S. Prytkov, V. Y. Timofeev, D. G. Ardyukov, and T. Kato, Present Tectonics of the Southeast of Russia as seen From GPS Observations, Geophysical Journal International, 184(2), 529-540, doihttps://doi.org/10.1111/J.1365-246X.2010.04871.X, 2011.

50. Sorokhtin, O. G., and L. I. Lobkovsky, Mechanism for Pulling of Sediments in Subduction Zone of Lithospheric Plates, Izvestiya Physics of the Solid Earth, 12(5), 3-10, 1976.

51. Steblov, G. M., M. G. Kogan, R. W. King, C. H. Scholz, R. Burgmann, and D. I. Frolov, Imprint of the North American Plate in Siberia Revealed by GPS, Geophys. Res. Lett., 30(18), 1-4, doihttps://doi.org/10.1029/2003GL017805, 2003.

52. Steblov, G. M., T. A. Grekova, N. F. Vasilenko, A. S. Prytkov, and D. I. Frolov, Dynamics of the Kuril-Kamchatka Subduction Zone from GPS, Izvestiya Physics of the Solid Earth, 46(5), 440-445, doihttps://doi.org/10.1134/S1069351310050095, 2010.

53. Takahashi, N., M. Kasahara, F. Kimata, S. Miura, K. Heki, T. Seno, T. Kato, N. Vasilenko, A. Ivashchenko, V. Bahtiarov, V. Levin, E. Gordeev, F. Korchagin, and M. Gerasimenko, Velocity Field of Around the Sea of Okhotsk and Sea of Japan Regions Determined from a New Continuous GPS Network Data, Geophys. Res. Lett., 26(16), 2533-2536, doihttps://doi.org/10.1029/1999GL900565, 1999.

54. Timofeev, V. Y., Generalization of the Results of LongTerm Strainmeter and GPS Observations for Intraplate Regions, Izvestiya Physics of the Solid Earth, 50(6), 752-769, doihttps://doi.org/10.1134/S1069351314060093, 2014.

55. Timofeev, V. Y., D. G. Ardyukov, A. V. Timofeev, and E. V. Boiko, Modern Movements of the Crust Surface in Gorny Altai from GPS Data, Geodynamics & Tectonophysics, 10(1), 123-146, doihttps://doi.org/10.5800/GT-201910-1-0407, (in Russian), 2019.

56. Vladimirova, I., L. Lobkovsky, Y. Gabsatarov, G. Steblov, N. Vasilenko, A. Prytkov, and D. Frolov, Patterns of the Seismic Cycle in the Kuril Island Arc from GPS Observations, Pure and Applied Geophysics, 177(8), 3599-3617, doihttps://doi.org/10.1007/s00024-020-02495-z, 2020.

57. Wang, M., and Z. Shen, Present-day crustal deformation of continental China derived from GPS and its tectonic implications, J. Geophys. Res., 125, e2019JB018,774, 2020.

58. Zhao, D., Global Tomographic Images of Mantle Plumes and Subducting Slabs: Insight into Deep Earth Dynamics, Physics of the Earth and Planetary Interiors, 146(1), 3-34, doihttps://doi.org/10.1016/J.PEPI.2003.07.032, 2004.

59. Zhao, D., Multiscale Seismic Tomography and Mantle Dynamics, Gondwana Research, 15(3), 297-323, doihttps://doi.org/10.1016/J.GR.2008.07.003, 2009.

60. Zhao, D., F. Pirajno, N. L. Dobretsov, and L. Liu, Mantle structure and dynamics under east russia and adjacent regions, Russian Geology and Geophysics, 51, 925-938, doihttps://doi.org/10.1016/J.RGG.2010.08.003, 2010.

Login or Create
* Forgot password?