Chernogolovka, Moscow, Russian Federation
Russian Federation
CSCSTI 37.15
CSCSTI 37.25
CSCSTI 37.31
CSCSTI 38.01
In most modern studies of lithospheric (petrogenic) carbonreservoirs in the earth’s crust, it is assumed that crude oil and natural gas (petroleum) are thermal generation products from the relics of biological organic matter accumulated in sedimentary rocks during geological time and deeply buried in a region of high pressure and temperature. In this sedimentary-migration (“biogenic”) concept of the origin of oil, the direction of the proposed evolutionary process of carbon transformation was determined: buried biological material → kerogen → oil → gas as a manifestation of progressive metamorphism (pressure and temperature increase). However, the discovery of kerogen in the meteorite’s composition does not allow us to suggest a biological source of carbon for the formation of this polymeric “organic” substance, but in turn allows us to suggest inorganic sources of kerogen, namely “oil” and “gas"non methane hydrocarbons (HCs), originated in the depths of their parent bodies (icy planetesimals). The genetic relationship of oil, natural gas and carbon matter of black shale formations (kerogen) on Earth is also beyond doubt, and therefore, in this paper, the evolution of petrogenic carbon reservoirs, including oil shale rocks in the lithosphere, is considered on the basis of a deep inorganic concept, in which the direction of the carbon transformation process is the opposite of the biogenic concept and is represented as HCs → gas → oil → kerogen. The analysis of phase diagrams and experimental data made it possible to determine two trends in the evolution of non-methane hydrocarbons in the Earth’s interior. In the upper mantle, the “metastability” of heavy (with a lower H/C ratio) HCs increases with depth. However, at temperatures and pressures corresponding to the surface mantle-crustal hydrothermal conditions, the “relative metastability” of heavy hydrocarbons increases with approach to the surface. When deep HCs fluids rise to the surface, petrogenic oil reservoirs are formed as a result of the decreases in hydrogen fugacity and a phase transition: gas HCs → liquid oil. At the physical and chemical conditions of an oil reservoir, metastable reversible phase equilibria are established between liquid oiland H2O, gas HCs and CO2, and solid (pseudocrystalline) “mature” and “immature” kerogens of “oil source” rocks. A decrease in hydrogen pressure and temperature leads to a stoichiometric phase transition (“freezing”) of liquid oil into solid kerogens. This occurs as a result of oil dehydrogenation in the processes of high-temperature CO2 fixation and low-temperature hydration of oil hydrocarbons, which are the main geochemical pathways for its transformation into kerogen. Thus, the formation of carbon matter in petrogenic reservoirs is the result of regressive (retrograde) metamorphism of deep hydrocarbon fluids, natural gas, liquid oil, and naphthide accumulations.
phase diagrams, chemical potentials, metastable equilibria, hydrocarbons, fluids, petrogenic carbon reservoirs, naphthide genesis, oil, kerogen, black shales, regressive metamorphism, CO2 fixation, hydration
1. Alexander C. M. O., Cody G. D., De Gregorio B. T., et al. The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N // Geochemistry. — 2017. — Vol. 77, no. 2. — P. 227–256. — DOI:https://doi.org/10.1016/j.chemer.2017.01.007.
2. Ancilotto F., Chiarotti G. L., Scandolo S., et al. Dissociation of Methane into Hydrocarbons at Extreme (Planetary) Pressure and Temperature // Science. — 1997. — Vol. 275, no. 5304. — P. 1288–1290. — DOI:https://doi.org/10.1126/science.275.5304.1288.
3. Aubert J., Tarduno J. A., Johnson C. L. Observations and Models of the Long-Term Evolution of Earth’s Magnetic Field // Space Sci. Rev. — 2010. — Vol. 155, no. 1. — P. 337–370. — DOI:https://doi.org/10.1007/s11214-010-9684-5.
4. Bebout G. E. Metamorphic chemical geodynamics of subduction zones // Earth Planet. Sci. Lett. — 2007. — Vol. 260, no. 3/4. — P. 373–393. — DOI:https://doi.org/10.1016/j.epsl.2007.05.050.
5. Beeskow B., Treloar P. J., Rankin A. H., et al. A reassessment of models for hydrocarbon generation in the Khibiny nepheline syenite complex, Kola Peninsula, Russia // Lithos. — 2006. — Vol. 91, no. 1. — P. 1–18. — DOI:https://doi.org/10.1016/j.lithos.2006.03.006.
6. Belonoshko A. B., Lukinov T., Rosengren A., et al. Synthesis of heavy hydrocarbons at the coremantle boundary // Sci. Rep. — 2015. — Vol. 5. — P. 18382. — DOI:https://doi.org/10.1038/srep18382.
7. Benedetti L. R., Nguyen J. H., Caldwell W. A., et al. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? // Science. — 1999. — Vol. 286, no. 5437. — P. 100–102. — DOI:https://doi.org/10.1126/science.286.5437.100.
8. Berner R. A. The long-term carbon cycle, fossil fuels and atmospheric composition // Nature. — 2003. — Vol. 426, no. 6964. — P. 323–326. — DOI:https://doi.org/10.1038/nature02131.
9. Bochkarev V. A., Bochkarev A. V. Renewable Hydrocarbon Reserves. — M. Publishing house: All-Russian Research Institute of Organization, Management, Economics of the Oil, Gas Industry, 2017. — P. 275.
10. Bonini M., Rudolph M. L., Manga M. Long- and short-term triggering and modulation of mud volcano eruptions by earthquakes // Tectonophysics. — 2016. — Vol. 672/673. — P. 190– 211. — DOI:https://doi.org/10.1016/j.tecto.2016.01.037.
11. Boreham C. J., Sohn J. H., Cox N., et al. Hydrogen and hydrocarbons associated with the Neoarchean Frog’s Leg Gold Camp, Yilgarn Craton, Western Australia // Chem. Geol. — 2021. — Vol. 575. — P. 120098. — DOI:https://doi.org/10.1016/j.chemgeo.2021.120098.
12. Bowling T. J., Johnson B. C., Marchi S., et al. An endogenic origin of cerean organics // Earth Planet. Sci. Lett. — 2020. — Vol. 534. — P. 116069. — DOI:https://doi.org/10.1016/j.epsl.2020.116069.
13. Bulbak T. A., Tomilenko A. A., Gibsher N. A., et al. Hydrocarbons in fluid inclusions from native gold, pyrite and quartz of the Sovetskoye deposit (Yenisei Ridge, Russia) according to pyrolysis-free gas chromatography-mass spectrometry // Geology and geophysics. — 2020. — Vol. 61, no. 11. — P. 1535–1560. — DOI:https://doi.org/10.15372/GiG2020145.
14. Canfield D. E., Zuilen M. A. van, Nabhan S., et al. Petrographic carbon in ancient sediments constrains Proterozoic Era atmospheric oxygen levels // Proc. Natl. Acad. Sci. U. S. A. — 2021. — Vol. 118, no. 23. — P. 2101544118. — DOI:https://doi.org/10.1073/pnas.2101544118.
15. Chekaluk E. B. Earth’s upper mantle oil. — Kyiv : Science thought, 1967. — P. 256.
16. Chepurov A. I., Tomilenko A. A. Fluid inclusions in natural diamonds from placers in Yakutia // Reports of the Academy of Sciences of the USSR. — 1994. — Vol. 336, no. 5. — P. 662–666.
17. Connolly D. L., Brouwer F., Walraven D. Detecting fault-related hydrocarbon migration pathways in seismic data: Implications for fault-seal, pressure, and charge prediction // GulfCoast Association of Geological Societies Transactions. — 2008. — Vol. 58. — P. 191–203.
18. d’Ischia M., Manini P., Martins Z., et al. Insoluble organic matter in chondrites: Archetypal melaninlike PAH-based multifunctionality at the origin of life? // Phys. Life Rev. — 2021. — Vol. 37. — P. 65–93. — DOI:https://doi.org/10.1016/j.plrev.2021.03.002.
19. Dasgupta R., Hirschmann M. M. The deep carbon cycle and melting in Earth’s interior // Earth Planet. Sci. Lett. — 2010. — Vol. 298, no. 1. — P. 1–13. — DOI:https://doi.org/10.1016/j.epsl.2010.06.039.
20. Day H. W. A revised diamond-graphite transition curve // Am. Mineral. — 2012. — Vol. 97, no. 1. — P. 52–62. — DOI:https://doi.org/10.2138/am.2011.3763.
21. Frezzotti M.-L., Huizenga J.-M., Compagnoni R., et al. Diamond formation by carbon saturation in C–O–H fluids during cold subduction of oceanic lithosphere // Geochim. Cosmochim. Acta. — 2014. — Vol. 143. — P. 68–86. — DOI:https://doi.org/10.1016/j.gca.2013.12.022.
22. Galimov E. M., Kaminsky F. V. Diamonds in the oceanic lithosphere. Volcanic diamonds and diamonds in ophiolites // Geochemistry. — 2021. — Vol. 66, no. 1. — P. 3–14. — DOI:https://doi.org/10.31857/S0016752521010040.
23. Galimov E. M., Kaminsky F. V., Karpov G. A., et al. On Compositional Features and Nature of Volcanogenic Diamonds // Geology and geophysics. — 2020. — Vol. 61, no. 5. — P. 1303– 1315. — DOI:https://doi.org/10.15372/gig2020172.
24. Galvez M. E., Fischer W. W., Jaccard S. L., et al. Materials and pathways of the organic carbon cycle through time // Nat. Geosci. — 2020. — Vol. 13, no. 8. — P. 535–546. — DOI:https://doi.org/10.1038/s41561-020-0563-8.
25. Gizé A. F., Macdonald R. Hydrocarbons act as ore fluid // Geology. — 1993. — Vol. 21. — P. 129– 132.
26. Glein C. R., Shock E. L. A geochemical model of non-ideal solutions in the methane–ethane– propane–nitrogen–acetylene system on Titan // Geochim. Cosmochim. Acta. — 2013. — Vol. 115. — P. 217–240. — DOI:https://doi.org/10.1016/j.gca.2013.03.030.
27. Gold T. Terrestrial sources of carbon and earthquake outgassing // J. Pet. Geol. — 1979. — Vol. 1. — P. 3–19. — DOI:https://doi.org/10.1111/j.1747-5457.1979.tb00616.x.
28. Gold T. The Origin of Natural Gas and Petroleum, and the Prognosis for Future Supplies // Annu. Rev. Energy Environ. — 1985. — Vol. 10, no. 1. — P. 53–77. — DOI:https://doi.org/10.1146/annurev.eg.10.110185.000413.
29. Gold T. The deep, hot biosphere // Proc. Natl. Acad. Sci. U. S. A. — 1992. — Vol. 89, no. 13. — P. 6045–6049. — DOI:https://doi.org/10.1073/pnas.89.13.6045.
30. Gottikh R. P., Pisotskiy B. I., Plotnikova I. N. Reduced fluids in the crystalline basement and the sedimentary basin (on an example of Romashkino and Verkhne-Chonskoye oil fields // ARPN Journal of Earth Sciences. — 2014. — Vol. 3. — P. 25–41. — DOI:https://doi.org/10.1016/j.gexplo.2008.11.041.
31. He D., Wang X., Yang Y., et al. Hydrothermal synthesis of long-chain hydrocarbons up to C24 with NaHCO3- assisted stabilizing cobalt // Proceedings of the National Academy of Sciences. — 2021. — V. 118, № 51. — e2115059118. — DOI:https://doi.org/10.1073/pnas.2115059118.
32. Helgeson H. C., Knox A. M., Owens C. E., et al. Petroleum, oil field waters, and authigenic mineral assemblages Are they in metastable equilibrium in hydrocarbon reservoirs // Geochimica et Cosmochimica Acta. — 1993. — V. 57, № 14. — P. 3295—3339. — DOI:https://doi.org/10.1016/0016-7037(93)90541-4.
33. Helgeson H. C., Richard L., McKenzie W. F., et al. A chemical and thermodynamic model of oil generation in hydrocarbon source rocks // Geochimica et Cosmochimica Acta. — 2009. — Vol. 73, no. 3. — P. 594–695. — DOI:https://doi.org/10.1016/j.gca.2008.03.004.
34. Hsu C.-W., Marcon Y., Römer M., et al. Heterogeneous hydrocarbon seepage at Mictlan asphalt knoll of the southern Gulf of Mexico // Mar. Pet. Geol. — 2021. — Vol. 132. — P. 105185. — DOI:https://doi.org/10.1016/j.marpetgeo.2021.105185.
35. Huang F., Daniel I., Cardon H., et al. Immiscible hydrocarbon fluids in the deep carbon cycle // Nat. Commun. — 2017. — Vol. 8. — P. 15798. — DOI:https://doi.org/10.1038/ncomms15798.
36. Hunt J. M. Petroleum Geochemistry and Geology. — New York : W.H. Freeman, 1996. — P. 743.
37. Ivanov K. S., Fedorov Y. N., Petrov L. A., et al. On the Nature of Oil Biomarkers // Doklady Academii Nauk. — 2010. — Vol. 432. — P. 227– 231.
38. Ivanov K. S., Erokhin Y. V., Kudryavtsev D. A. Inorganic geochemistry of crude oils of northern Eurasia after ICP-MS data as a clear evidence for their deep origin. — 2021.
39. Jin Z., Zhang L., Wang Y., et al. Using carbon, hydrogen and helium isotopes to unravel the origin of hydrocarbons in the Wujiaweizi area of the Songliao Basin, China // Episodes. — 2009. — Vol. 32, no. 3. — P. 167–176. — DOI:https://doi.org/10.18814/epiiugs/2009/v32i3/003.
40. Kaminsky F. V., Voropaev S. A. Modern ideas about the genesis of the diamond // Geochemistry. — 2021. — Vol. 66, no. 11. — P. 993–1007. — DOI:https://doi.org/10.31857/s0016752521110030.
41. Kaminsky F. V., Ryabchikov I. D., McCammon C. A., et al. Oxidation potential in the Earth’s lower mantle as recorded by ferropericlase inclusions in diamond // Earth Planet. Sci. Lett. — 2015. — Vol. 417. — P. 49–56. — DOI:https://doi.org/10.1016/j.epsl.2015.02.029.
42. Karpov I. K., Zubkov V. S., Bychinsky V. A., et al. Detonation of heavy hydrocarbons in mantle flows // Geology and geophysics. — 1998. — Vol. 39, no. 6. — P. 754–762.
43. Kenney J. F., Kutcherov V. A., Bendeliani N. A., et al. The evolution of multicomponent systems at high pressures: VI. The thermodynamic stability of the hydrogen–carbon system: The genesis of hydrocarbons and the origin of petroleum // Proceedings of the National Academy of Sciences. — 2002. — Vol. 99, no. 17. — P. 10976–10981. — DOI:https://doi.org/10.1073/pnas.172376899.
44. Kerridge J. F. Isotopic composition of carbonaceouschondrite kerogen: evidence for an interstellar origin of organic matter in meteorites // Earth Planet. Sci. Lett. — 1983. — Vol. 64, no. 2. — P. 186–200. — DOI:https://doi.org/10.1016/0012-821X(83)90203-0.
45. Khomich V. G., Nemeth K., Boriskina N. G. Indicators of geodynamic control of the formation of mineral resources along a convergent plate margin: Sakhalin-South Kuril areas, Russia // International Journal of Earth Sciences. — 2020. — V. 109, № 8. — P. 2759—2772. — DOI:https://doi.org/10.1007/s00531-020-01923-8.
46. Kissin Y. V. Hydrocarbon components in carbonaceous meteorites // Geochimica et Cosmochimica Acta. — 2003. — V. 67, № 9. —P. 1723—1735. — DOI: https://doi.org/10.1016/S0016-7037(02)00982-1.
47. Kolesnikov A., Kutcherov V. G., Goncharov A. F. Methane-derived hydrocarbons produced under upper-mantle conditions // Nat. Geosci. — 2009. — Vol. 2, no. 8. — P. 566–570. — DOI:https://doi.org/10.1038/ngeo591.
48. Korzhinsky D. S. On thermodynamics of open systems and phase rule // Geochim. Cosmochim. Acta. — 1966. — Vol. 30. — P. 829–836.
49. Krayushkin V. A. Non-biogenic nature of a giant gas and oil accumulation on the continental slope of the World Ocean // Deep Oil. — 2014. — Vol. 2. — P. 739–751.
50. Krissansen-Totton J., Kipp M. A., Catling D. C. Carbon cycle inverse modeling suggests large changes in fractional organic burial are consistent with the carbon isotope record and may have contributed to the rise of oxygen // Geobiology. — 2021. — Vol. 19, no. 4. — P. 342–363. — DOI:https://doi.org/10.1111/gbi.12440.
51. Kropotkin P. N. Degassing of the Earth and the origin of hydrocarbons // Int. Geol. Rev. — 1985. — Vol. 27, no. 11. — P. 1261–1275. — DOI:https://doi.org/10.1080/00206818509466501.
52. Kudryavtsev N. A. Against the organic hypothesis of the origin of oil // Oil industry. — 1951. — Vol. 9. — P. 17–29.
53. Kudryavtsev N. A. Oil and Gas Genesis. — Tr. VNIGRI, Nedra, L., 1973. — P. 216.
54. Kusov B. R. The Genesis of Some Carboniferous Minerals (From Methane to Diamond). — 2nd ed. — Vladikavkaz : IPO SOIGSI, 2012.
55. Kutcherov V. G., Krayushkin V. A. Deep-seated abiogenic origin of petroleum: From geological assessment to physical theory // Rev. Geophys. — 2010. — Vol. 48, no. 1. — DOI:https://doi.org/10.1029/2008rg000270.
56. Letnikov F. A., Dorogokupets P. I. To the question of the role of superdeep fluid systems of the Earth’s core in endogenous geological processes // Reports of the Academy of Sciences. — 2001. — Vol. 378. — P. 535–537.
57. Lifshits S. Deep fluids and their role in hydrocarbon migration and oil deposit formation exemplified by supercritical CO2 // Earth Environ. Sci. Trans. R. Soc. Edinb. — 2021. — Vol. 112, no. 1. — P. 1–11. — DOI:https://doi.org/10.1017/S1755691021000013.
58. Lobanov S. S., Chen P.-N., Chen X.-J., et al. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors // Nat. Commun. — 2013. — Vol. 4. — P. 2446. — DOI:https://doi.org/10.1038/ncomms3446.
59. Lunine J. I., Lorenz R. Rivers, Lakes, Dunes, and Rain: Crustal Processes in Titan’s Methane Cycle // Annu. Rev. Earth Planet. Sci. — 2009. — Vol. 37, no. 1. — P. 299–320. — DOI:https://doi.org/10.1146/annurev.earth.031208.100142.
60. Managadze G. A new universal mechanism of organic compounds synthesis during prebiotic evolution // Planet. Space Sci. — 2007. — Vol. 55, no. 1. — P. 134–140. — DOI:https://doi.org/10.1016/j.pss.2006.05.024.
61. Manning C. E., Shock E. L., Sverjensky D. A. The chemistry of carbon in aqueous fluids at crustal and upper-mantle conditions: experimental and theoretical constraints // Reviews in Mineralogy and Geochemistry. — 2013. — Vol. 75. — P. 109– 148. — DOI:https://doi.org/10.2138/rmg.2013.75.5.
62. Manuella F. C., Scribano V., Carbone S. Abyssal serpentinites as gigantic factories of marine salts and oil // Marine and Petroleum Geology. — 2018. — Vol. 92. — P. 1041–1055. — DOI:https://doi.org/10.1016/j.marpetgeo.2018.03.026.
63. Marakushev A. A., Paneyakh N. A., Marakushev S. A. Sulfide ore formation and its hydrocarbon specialization. — GEOS, M., 2014. — P. 184.
64. Marakushev A. A. The origin of the Earth and the nature of its endogenous activity. — 1999. — P. 255.
65. Marakushev A. A., Glazovskaya L. I., Marakushev S. A. Evolution of the iron-silicate and carbon material of carbonaceous chondrites // Moscow University Geology Bulletin. — 2013. — Vol. 68, no. 5. — P. 265–281. — DOI:https://doi.org/10.3103/s0145875213050074.
66. Marakushev A. A., Marakushev S. A. PT facies of elementary, hydrocarbon, and organic substances in the C–H–O system // Doklady Earth Sciences. — 2006a. — Vol. 406, no. 1. — P. 141– 147. — DOI:https://doi.org/10.1134/s1028334x0601034x.
67. Marakushev A. A., Marakushev S. A. Factors of formation of carbon isotope anomalies in sedimentary rocks // Bulletin of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences. — 2006b. — Vol. 7. — P. 2–4.
68. Marakushev A. A., Marakushev S. A. Formation of oil and gas fields // lithology and minerals. — 2008a. — Vol. 5. — P. 505–521. — DOI:https://doi.org/10.1134/S0024490208050039.
69. Marakushev A. A., Marakushev S. A. Earth’s hydrogen respiration – its origin, geological and biological consequences // Alternative energy and ecology. — 2008b. — Vol. 1. — P. 156–174.
70. Marakushev A. A., Marakushev S. A. Fluid Evolution of the Earth and Origin of the Biosphere // Man and the Geosphere / ed. by I. V. Florinsky. — New York : Nova Science Publishers Inc., 2010a. — P. 3–31. — (Earth Sciences in the 21ST Century Series). — DOI:https://doi.org/10.13140/2.1.4787.9363.
71. Marakushev A. A., Marakushev S. A. Origin and Fluid Evolution of the Earth // Space and time. — 2010b. — Vol. 1. — P. 98–118.
72. Marakushev A. A., Marakushev S. A. Genetic connection of oil deposits with deep alkaline magmatism // deep oil. — 2013. — Vol. 1, no. 10. — P. 1486–1497.
73. Marakushev A. A., Perchuk L. L., Rast N., et al. Physico-chemical analysis of paragenesis of minerals: A review // Geological Journal. — 1966. — Vol. 5, no. 1. — P. 67–94. — DOI:https://doi.org/10.1002/gj.3350050107.
74. Marakushev S. A., Belonogova O. V. The parageneses thermodynamic analysis of chemoautotrophic CO2 fixation archaic cycle components, their stability and self-organization in hydrothermal systems // Journal of Theoretical Biology. — 2009. — Vol. 257, no. 4. — P. 588–597. — DOI:https://doi.org/10.1016/j.jtbi.2008.11.032.
75. Marakushev S. A., Belonogova O. V. The Divergence and Natural Selection of Autocatalytic Primordial Metabolic Systems // Origins of Life and Evolution of Biospheres. — 2013. — Vol. 43, no. 3. — P. 263–281. — DOI:https://doi.org/10.1007/s11084-013-9340-7.
76. Marakushev S. A., Belonogova O. V. Ideas and perspectives: Development of nascent autotrophic carbon fixation systems in various redox conditions of the fluid degassing on early Earth // Biogeosciences. — 2019. — Vol. 16, no. 8. — P. 1817–1828. — DOI:https://doi.org/10.5194/bg-16-1817-2019.
77. Marakushev S. A., Belonogova O. V. An inorganic origin of the “oil-source” rocks carbon substance // Georesursy. — 2021. — Vol. 23, no. 3. — P. 164–176. — DOI:https://doi.org/10.18599/grs.2021.3.19.
78. Mastrogiuseppe M., Poggiali V., Hayes A. G., et al. Deep and methane-rich lakes on Titan // Nature Astronomy. — 2019. — Vol. 3, no. 6. — P. 535– 542. — DOI:https://doi.org/10.1038/s41550-019-0714-2.
79. Matthewman R., Martins Z., Sephton M. A. Type IV kerogens as analogues for organic macromolecular materials in aqueously altered carbonaceous chondrites // Astrobiology. — 2013. — Vol. 13, no. 4. — P. 324–333. — DOI:https://doi.org/10.1089/ast.2012.0820.
80. McCollom T. M. Laboratory Simulations of Abiotic Hydrocarbon Formation in Earth’s Deep Subsurface // Rev. Mineral. Geochem. — 2013. — Vol. 75, no. 1. — P. 467–494. — DOI:https://doi.org/10.2138/rmg.2013.75.15.
81. McCollom T. M., Seewald J. S. A reassessment of the potential for reduction of dissolved CO 2 to hydrocarbons during serpentinization of olivine // Geochim. Cosmochim. Acta. — 2001. — Vol. 65, no. 21. — P. 3769–3778. — DOI:https://doi.org/10.1016/s0016-7037(01)00655-x.
82. Mendeleev D. Entstehungund Vorkommen des materials // Berichte der Deutschen Chemischen Gesellschaft. — 1877a. — V. 10. — P. 229.
83. Mendeleev D. L’Origine du pétrole // Revue Scientifique. — 1877b. — Vol. VIII. — P. 409–416.
84. Mendeleev D. The Principles of chemistry. Part 1. — 2nd English. — New York, USA : P. F. Collier, 1902.
85. Mukhina E. D., Yu Kolesnikov A., Yu Serovaiskii A., et al. Experimental Modelling of Hydrocarbon Migration Processes // J. Phys. Conf. Ser. — 2017. — Vol. 950, no. 4. — P. 042040. — DOI:https://doi.org/10.1088/1742-6596/950/4/042040.
86. Muslimov R. K., Plotnikova I. N. Replenishment of oil deposits from the position of a new concept of oil and gas formation // Georesursy. — 2019. — Vol. 21, no. 4. — P. 40–48. — DOI:https://doi.org/10.18599/grs.2019.4.40-48.
87. Nivin V. The Origin of Hydrocarbon Gases in the Lovozero Nepheline-Syenite Massif (Kola Peninsula, NW Russia), as Revealed from He and Ar Isotope Evidence // Minerals. — 2020. — Vol. 10, no. 9. — P. 830. — DOI:https://doi.org/10.3390/min10090830.
88. Odintsova A., Gvishiani A., Nakicenovic N., et al. The world’s largest oil and gas hydrocarbon deposits: ROSA database and GIS project development // Russian Journal of Earth Sciences. — 2018. — Vol. 18, no. 3. — P. 1–14.
89. Oelkers E. H., Helgeson H. C., Shock E. L., et al. Summary of the Apparent Standard Partial Molal Gibbs Free Energies of Formation of Aqueous Species, Minerals, and Gases at Pressures 1 to 5000 Bars and Temperatures 25 to 1000 ∘C // J. Phys. Chem. Ref. Data. — 1995. — Vol. 24, no. 4. — P. 1401–1560. — DOI:https://doi.org/10.1063/1.555976.
90. Peña-Alvarez M., Brovarone A. V., Donnelly M.-E., et al. In-situ abiogenic methane synthesis from diamond and graphite under geologically relevant conditions // Nat. Commun. — 2021. — Vol. 12, no. 1. — P. 6387. — DOI:https://doi.org/10.1038/s41467-021-26664-3.
91. Petersilie I. A., Sörensen H. Hydrocarbon gases and bituminous substances in rocks from the Ilímaussaq alkaline intrusion, South Greenland: (Contribution to the Mineralogy of Ilímaussaq No. 18) // Lithos. — 1970. — Vol. 3, no. 1. — P. 59–76. — DOI:https://doi.org/10.1016/0024-4937(70)90088-5.
92. Pokrovskii V. A., Helgeson H. C. Solubility of petroleum in oil-field waters as a function of the oxidation state of the system // Geology. — 1994. — V. 22, № 9. — P. 851—854. — DOI: 10. 1130/0091-7613(1994)022<0851:SOPIOF>2.3.CO;2.
93. Porfir’yev V. B. Inorganic origin of petroleum // AAPG Bull. — 1974. — Vol. 58. — P. 3– 33. — DOI:https://doi.org/10.1306/83D9136C-16C7-11D7-8645000102C1865D.
94. Potter J., Konnerup-Madsen J. A review of the occurrence and origin of abiogenic hydrocarbons in igneous rocks, Hydrocarbons in Crystalline Rocks // Geological Society London Special Publication. — 2003. — Vol. 214. — P. 151–173. — DOI:https://doi.org/10.1144/GSL.SP.2003.214.01.10.
95. Potter J., Rankin A. H., Treloar P. J. Abiogenic Fischer–Tropsch synthesis of hydrocarbons in alkaline igneous rocks; fluid inclusion, textural and isotopic evidence from the Lovozero complex, N.W. Russia // Lithos. — 2004. — Vol. 75, no. 3. — P. 311–330. — DOI:https://doi.org/10.1016/j.lithos.2004.03.003.
96. Potter J., Salvi S., Longstaffe F. J. Abiogenic hydrocarbon isotopic signatures in granitic rocks: Identifying pathways of formation // Lithos. — 2013. — Vol. 182/183. — P. 114–124. — DOI:https://doi.org/10.1016/j.lithos.2013.10.001.
97. Quirico E., Bonal L., Beck P., et al. Prevalence and nature of heating processes in CM and C2- ungrouped chondrites as revealed by insoluble organic matter // Geochim. Cosmochim. Acta. — 2018. — Vol. 241. — P. 17–37. — DOI:https://doi.org/10.1016/j.gca.2018.08.029.
98. Rezanov I. A. Biogenic oil from inorganic carbon // Genesis of hydrocarbon fluids and deposits / ed. by A. N. Dmitrievsky. — GEOS, 2006. — P. 103– 111.
99. Richard L., Helgeson H. C. Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest // Geochim. Cosmochim. Acta. — 1998. — Vol. 62, no. 23. — P. 3591–3636. — DOI:https://doi.org/10.1016/S0016-7037(97)00345-1.
100. Robie R. A., Hemingway B. S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures : tech. rep. — 1995. — P. 470. — DOI:https://doi.org/10.3133/b2131.
101. Salvi S., Williams-Jones A. E. Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada // Lithos. — 2006. — Vol. 91, no. 1. — P. 19–34. — DOI:https://doi.org/10.1016/j.lithos.2006.03.040.
102. Sanz-Robinson J., Brisco T., Warr O., et al. Advances in carbon isotope analysis of trapped methane and volatile hydrocarbons in crystalline rock cores // Rapid Commun. Mass Spectrom. — 2021. — Vol. 35, no. 20. — e9170. — DOI:https://doi.org/10.1002/rcm.9170.
103. Savelyeva V. B., Danilova Y. V., Shumilova T. G., et al. Epigenetic graphitization in the basement of the Siberian craton - evidence of the migration of hydrocarbon-enriched fluids in the paleoproterozoic // Dokl. Akad. Nauk. — 2019. — Vol. 486, no. 2. — P. 217–222. — DOI:https://doi.org/10.31857/s0869-56524862217-222.
104. Seewald J. S. Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions // Nature. — 1994. — Vol. 370, no. 6487. — P. 285–287. — DOI:https://doi.org/10.1038/370285a0.
105. Seewald J. S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments // Geochim. Cosmochim. Acta. — 2001. — Vol. 65, no. 10. — P. 1641– 1664. — DOI:https://doi.org/10.1016/s0016-7037(01)00544-0.
106. Seewald J. S., Benitez-Nelson B. C., Whelan J. K. Laboratory and theoretical constraints on the generation and composition of natural gas // Geochim. Cosmochim. Acta. — 1998. — Vol. 62, no. 9. — P. 1599–1617. — DOI:https://doi.org/10.1016/s0016-7037(98)00000-3.
107. Seewald J. S., Zolotov M. Y., McCollom T. Experimental investigation of single carbon compounds under hydrothermal conditions // Geochim. Cosmochim. Acta. — 2006. — Vol. 70, no. 2. — P. 446–460. — DOI:https://doi.org/10.1016/j.gca.2005.09.002.
108. Sephton M. A., Hazen R. M. On the origins of deep hydrocarbons // Rev. Mineral. Geochem. — 2013. — Vol. 75, no. 1. — P. 449–465. — DOI:https://doi.org/10.2138/rmg.2013.75.14.
109. Serovaiskii A., Dubrovinky L., Kutcherov V. Stability of a Petroleum-Like Hydrocarbon Mixture at Thermobaric Conditions That Correspond to Depths of 50 km // Minerals. — 2020. — Vol. 10, no. 4. — P. 355. — DOI:https://doi.org/10.3390/min10040355.
110. Serovaiskii A., Kutcherov V. Formation of complex hydrocarbon systems from methane at the upper mantle thermobaric conditions // Sci. Rep. — 2020. — Vol. 10, no. 1. — P. 4559. — DOI:https://doi.org/10.1038/s41598-020-61644-5.
111. Sherwood Lollar B., Lacrampe-Couloume G., Voglesonger K., et al. Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons // Geochimica et Cosmochimica Acta. — 2008. — V. 72, № 19. — P. 4778—4795. — DOI:https://doi.org/10.1016/j.gca.2008.07.004.
112. Shirey S. B., Cartigny P., Frost D. J., et al. Diamonds and the geology of mantle carbon // Rev. Mineral. Geochem. — 2013. — Vol. 75, no. 1. — P. 355–421. — DOI:https://doi.org/10.2138/rmg.2013.75.12.
113. Shock E. L. Organic acid metastability in sedimentary basins // Geology. — 1988. — Vol. 16, no. 10. — P. 886. — DOI:https://doi.org/10.1130/0091-7613(1988)016<0886:oamisb>2.3.co;2.
114. Simonyan G. S., Pirumyan G. P. New judgment on the genesis of oil. — Yerevan, 2021. — P. 288.
115. Sircar A. Hydrocarbon production from fractured basement formations // Curr. Sci. — 2004. — Vol. 87. — P. 147–151.
116. Skufin P., Samarina V., Skufina T., et al. To the question about the origins of oil and oil exploration of the Arctic zone of the Russian Federation // Int. J. Global Energy Issues. — 2021. — Vol. 43, no. 2/3. — P. 99–113. — DOI:https://doi.org/10.1504/IJGEI.2021.115138.
117. Sobolev N. V., Logvinova A. M., Tomilenko A. A., et al. Mineral and fluid inclusions in diamonds from the Urals placers, Russia: Evidence for solid molecular N2 and hydrocarbons in fluid inclusions // Geochim. Cosmochim. Acta. — 2019a. — Vol. 266. — P. 197–219. — DOI:https://doi.org/10.1016/j.gca.2019.08.028.
118. Sobolev N. V., Tomilenko A. A., Bul’bak T. A., et al. Composition of hydrocarbons in diamonds, garnet, and Olivine from diamondiferous peridotites from the udachnaya pipe in Yakutia, Russia // Engineering. — 2019b. — Vol. 5, no. 3. — P. 471–478. — DOI:https://doi.org/10.1016/j.eng.2019.03.002.
119. Sokol A. G., Tomilenko A. A., Bul’bak T. A., et al. Hydrogenation of carbon at 5.5–7.8 GPa and 1100–1400 ∘C: Implications to formation of hydrocarbons in reduced mantles of terrestrial planets // Phys. Earth Planet. Inter. — 2019. — Vol. 291. — P. 12–23. — DOI:https://doi.org/10.1016/j.pepi.2019.04.002.
120. Sonin V. M., Bulbak T. A., Zhimulev E. I., et al. Synthesis of heavy hydrocarbons at the temperature and pressure of the Earth’s upper mantle // Reports of the Academy of Sciences. — 2014. — Vol. 454, no. 1. — P. 84–88. — DOI:https://doi.org/10.7868/s0869565214010216.
121. Sorokhtin N. O., Nikiforov S. L., Kozlov N. E. Crust-mantle branch of the global carbon cycle and origin of deep-seated hydrocarbons // Vestn. MGTU. — 2018. — Vol. 21, no. 1. — P. 61– 79. — DOI:https://doi.org/10.21443/1560-9278-2018-21-1-61-79.
122. Spanu L., Donadio D., Hohl D., et al. Stability of hydrocarbons at deep Earth pressures and temperatures // Proceedings of the National Academy of Sciences. — 2011. — Vol. 108, no. 17. — P. 6843– 6846. — DOI:https://doi.org/10.1073/pnas.1014804108.
123. Sverjensky D., Daniel I., Brovarone A. V. The Changing Character of Carbon in Fluids with Pressure // Carbon in Earth’s Interior. Vol. 249. — American Geophysical Union, John Wiley & Sons, Inc. USA, 2020. — P. 259–269. — (Geophysical Monograph Series). — DOI:https://doi.org/10.1002/9781119508229.ch22.
124. Sverjensky D., Stagno V., Huang F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle // Nat. Geosci. — 2014. — Vol. 7, no. 12. — P. 909–913. — DOI:https://doi.org/10.1038/ngeo2291.
125. Syvorotkin V. L., Pavlenkova N. I. World rift system and oil and gas belts of the planet // deep oil. — 2013. — Vol. 1, no. 10. — P. 1576–1585.
126. Tao R., Zhang L., Tian M., et al. Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: Constraints from petrological observation and experimental simulation // Geochim. Cosmochim. Acta. — 2018. — Vol. 239. — P. 390–408. — DOI:https://doi.org/10.1016/j.gca.2018.08.008.
127. Tassi F., Bonini M., Montegrossi G., et al. Origin of light hydrocarbons in gases from mud volcanoes and CH4-rich emissions // Chemical Geology. — 2012. — Vol. 294/295. — P. 113–126. — DOI:https://doi.org/10.1016/j.chemgeo.2011.12.004.
128. Timurziev A. I. Mantle sources of hydrocarbon generation: geological and physical signs and predictive and search criteria for mapping; patterns of oil and gas content of the subsoil as a reflection of the unloading of mantle hydrocarbon systems in the Earth’s crust // Deep Oil. — 2013. — Vol. 1, no. 10. — P. 1498–1544.
129. Tomilenko A. A., Chepurov A. A., Sonin V. M., et al. Composition of volatile components captured by diamonds during growth in a metalcarbon-silicate system at high pressure and temperature // geokhimiya. — 2021. — Vol. 66, no. 9. — P. 799–810. — DOI:https://doi.org/10.31857/s0016752521080082.
130. Tomilenko A. A., Chepurov A. I., Sonin V. M., et al. The synthesis of methane and heavier hydrocarbons in the system graphite-ironserpentine at 2 and 4 GPa and 1200 ∘C // High Temp. High Press. — 2015. — Vol. 44, no. 6. — P. 451–465.
131. Vinogradoff V., Poggiali G., Raponi A., et al. Laboratory Investigations Coupled to VIR/Dawn Observations to Quantify the Large Concentrations of Organic Matter on Ceres // Minerals. — 2021. — Vol. 11, no. 7. — P. 719. — DOI:https://doi.org/10.3390/min11070719.
132. Wang X., Ouyang Z., Zhuo S., et al. Serpentinization, abiogenic organic compounds, and deep life // Science China Earth Sciences. — 2014. — V. 57, № 5. — P. 878—887. — DOI:https://doi.org/10.1007/s11430-014-4821-8.
133. Weiss Y., Czas J., Navon O. Fluid inclusions in fibrous diamonds // Reviews in Mineralogy and Geochemistry. — 2022. — Vol. 88. — P. 475– 532. — DOI:https://doi.org/10.2138/rmg.2022.88.09.
134. Xia X., Gao Y. Validity of geochemical signatures of abiotic hydrocarbon gases on Earth // J. Geol. Soc. — 2021. — Vol. 179. — P. 2021–077. — DOI:https://doi.org/10.1144/jgs2021-077.
135. Zhao Z., Liu X. Abiotic Hydrocarbons Generation Simulated by Fischer-Tropsch Synthesis under Hydrothermal Conditions in Ultra-deep Basins // Acta Geologica Sinica – English Edition. — 2022. — Vol. 96, no. 4. — P. 1331–1341. — DOI:https://doi.org/10.1111/1755-6724.14977.
136. Zubkov B. C., Stepanov A. N., Karpov I. K., et al. Thermodynamic model of the C–H system under conditions of high temperatures and pressures // Geochemistry. — 1998. — Vol. 1. — P. 95–101.
137. Zubkov V. S. Patterns of distribution and hypotheses of the origin of condensed naphthides in igneous rocks of various geodynamic settings // Geochemistry International. — 2009. — Vol. 8. — P. 787–804. — DOI:https://doi.org/10.1134/S0016702909080011.



