Freezing of Tidal Current Under Ice in a Shallow Channel
Abstract and keywords
Abstract (English):
We analyze tidal currents under ice in a shallow channel located near the tip of the Van Mijen Fjord in Spitsbergen. During the flood cycle of tide seawater flows under ice and strongly freezes in a shallow channel. During the ebb cycle salinity of the outflowing water is greater than that of the inflowing water. Salt balance is estimated. During high-water tide, salt water seeps through the cracks in the ice to the surface, which increases salinity of the snow and water mixture.

Keywords:
Spitsbergen, shallow water, channel under ice, tidal current, freezing of seawater, salinity increase
Text
Publication text (PDF): Read Download
References

1. Bogorodskii, P. V., N. E. Demidov, K. V. Filchuk, A. V. Marchenko, E. G. Morozov, A. L. Nikulina, A. V. Pnyushkov, and I. V. Ryzhov, Growth of Landfast Ice and its Thermal Interaction with Bottom Sediments in the Braganzavågen Gulf (West Spitsbergen), Russian Journal of Earth Sciences, 20, 6005, doihttps://doi.org/10.2205/2020ES000718, 2020.

2. Cottier, F. R., F. Nilsen, R. Skogseth, V. Tverberg, J. Skarðhamar, and H. Svendsen, Arctic fjords: a review of the oceanographic environment and dominant physical processes, Geological Society, London, Special Publications, 344(1), 35-50, doihttps://doi.org/10.1144/sp344.4, 2010.

3. Høyland, K. V., Ice Thickness, Growth and Salinity in Van Mijenfjorden, Svalbard, Norway, Polar Research, 28(3), 339-352, doihttps://doi.org/10.3402/polar.v28i3.6141, 2009.

4. Høyland, K. V., and P. Liferov, On the Initial Phase of Consolidation, Cold Regions Science and Technology, 41(1), 49-59, doihttps://doi.org/10.1016/j.coldregions.2004.09.003, 2005.

5. Høyland, K. V., and S. Løset, Measurements of Temperature Distribution, Consolidation and Morphology of a First-Year Sea Ice Ridge, Cold Regions Science and Technology, 29(1), 59-74, doihttps://doi.org/10.1016/S0165- 232X(99)00004-X, 1999.

6. Launiainen, J., B. Cheng, J. Launiainen, and B. Cheng, Modelling of Ice Thermodynamics in Natural Water Bodies, Cold Regions Science and Technology, 27(3), 153-178, doihttps://doi.org/10.1016/S0165-232X(98)00009- 3, 1998.

7. Leppäranta, M., A Review of Analytical Models of Sea-Ice Growth, Atmosphere-Ocean, 31(1), 123-138, doihttps://doi.org/10.1080/07055900.1993.9649465, 1993.

8. Liferov, P., K. V. Høyland, P. Liferov, and K. V. Høyland, In-Situ Ice Ridge Scour Tests: Experimental Set up and Basic Results, Cold Regions Science and Technology, 40(1), 97-110, doihttps://doi.org/10.1016/j.coldregions.2004.06.003, 2004.

9. Marchenko, A., E. Morozov, S. Muzylev, and S. Muzyleva, Measurements of Sea-Ice Flexural Stiffness by Pressure Characteristics of Flexural-Gravity Waves, Annals of Glaciology, 54(64), 51-60, doihttps://doi.org/10.3189/2013AoG64A075, 2013.

10. Marchenko, A. V., and E. G. Morozov, Surface Manifestations of the Waves in the Ocean Covered With Ice, Russian Journal of Earth Sciences, 16(1), ES1001, doihttps://doi.org/10.2205/2016ES000561, 2016.

11. Marchenko, A. V., E. G. Morozov, S. V.Muzylev, and A. S. Shestov, Interaction of Short Internal Waves with the Ice Cover in an Arctic Fjord, Oceanology, 50(1), 18-27, doihttps://doi.org/10.1134/S0001437010010029, 2010.

12. Marchenko, A. V., E. G. Morozov, A. V. Ivanov, T. G. Elizarova, and D. I. Frey, Ice Thickening Caused by Freezing of Tidal Jet, Russian Journal of Earth Sciences, 21, ES2004, doihttps://doi.org/10.2205/2021ES000761, 2021.

13. Morozov, E., A. Marchenko, K. Filchuk, Z. Kowalik, N. Marchenko, and I. Ryzhov, Sea Ice Evolution and Internal Wave Generation due to a Tidal Jet in a Frozen Sea, Applied Ocean Research, 87, 179-191, doihttps://doi.org/10.1016/j.apor.2019.03.024, 2019.

14. Morozov, E. G., S. V. Muzylev, A. S. Shestov, and A. V. Marchenko, Short-Period InternalWaves under an Ice Cover in Van Mijen Fjord, Svalbard, Advances in Meteorology, 2011, 6, doihttps://doi.org/10.1155/2011/573269, 2011.

15. Moslet, P. O., Medium Scale Ice-Structure Interaction, Cold Regions Science and Technology, 54(2), 143-152, doihttps://doi.org/10.1016/j.coldregions.2008.03.001, 2008.

16. Shestov, A., D. Wrangborg, and A. Marchenko, Hydrology of Braganzavågen under Ice-Covered Conditions, in Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, POAC, vol. 2015, 2015.

17. Skarðhamar, J., and H. Svendsen, Short-Term Hydrographic Variability in a Stratified Arctic Fjord, in Fjord Systems and Archives, Geological Society of London, doihttps://doi.org/10.1144/SP344.5, 2010.

18. Stefan, J., Über die Theorie der Eisbildung, Insbesondere Über Eisbildung im Polarmeere, Annalen der Physik, 278(2), 269-286, doihttps://doi.org/10.1002/andp.18912780206, 1891.

19. Strub-Klein, L., and K. V. Høyland, Spatial and Temporal Distributions of Level Ice Properties: Experiments and Thermo-Mechanical Analysis, Cold Regions Science and Technology, 71, 11-22, doihttps://doi.org/10.1016/j.coldregions.2011.10.001, 2012.

Login or Create
* Forgot password?