Russian Federation
Russian Federation
Russian Federation
from 01.01.2016 until now
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
The paper is concerned with the analysis of the simulated stress-strain state (SS) parameters of the earth's crust over the four-year period preceding the M7.1 2019 Ridgecrest earthquake in Southern California. SS parameters have been calculated using a detailed geomechanical model, taking into account an ongoing weak seismicity catalog data. Cyclic patterns are identified in the observed shear strain anomalies, with estimation of their spatial and temporal characteristics, and an attempt is made to track the influence of the local displacement direction and periodic migration of shear strain anomalies in the upper crust on the earthquake preparation. Finally, we discuss the role of the observed regularities in terms of existing models describing the earthquake preparation process.
Geomechanical modelling, shear strain, earthquakes, stress-strain state, stress anomaly excursions, precursors, monitoring, South California, Ridgecrest.
1. Akopian S. Ts., Bondur V.G., Rogozhin E.A. (2017) Technology for monitoring and forecasting strong earthquakes in Russia with the use of the seismic entropy method. Izvestiya, Physics of the Solid Earth. 53, 1, 32-51. doi:https://doi.org/10.1134/S1069351317010025.; ; EDN: https://elibrary.ru/YVCNDB
2. Argus D.F., and Gordon R.G. (1991) No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophys. Res. Lett. 18, 2039-2042.
3. Ben-Zion Y., and Zaliapin I. (2019) Spatial variations of rock damage production by earthquakes in southern California. Earth Planet. Sci. Lett. 512, 184-193.
4. Ben-Zion Y., and Zaliapin I. (2020) Localization and coalescence of seismicity before large earthquakes. Geophys. J. Int. 223, 561-583.; DOI: https://doi.org/10.1093/gji/ggaa315; EDN: https://elibrary.ru/DDDSWA
5. Bondur V.G., Zverev A.T. (2005) A method of earthquake forecast based on the lineament analysis of satellite images. Doklady Earth Sciences. 402, 4, 561-567.; EDN: https://elibrary.ru/LJESWP
6. Bondur V.G., Garagash I.A., Gokhberg M.B., Lapshin V.M., Nechaev Yu.V., Steblov G.M., Shalimov S.L. (2007) Geomechanical models and ionospheric variations related to strongest earthquakes and weak influence of atmospheric pressure gradients. Doklady Earth Sciences. 414, 4, 666-669. doi:https://doi.org/10.1134/S1028334X0704038.; DOI: https://doi.org/10.1134/S1028334X07040381; EDN: https://elibrary.ru/MWQRED
7. Bondur V.G., Garagash I.A., Gokhberg M.B., Lapshin V.M., and Nechaev Yu.V. (2010) Connection between variations of the stress-strain state of the Earth’s crust and seismic activity: the example of Southern California. Doklady Earth Sciences. 430, Part 1, 147-150. doi:https://doi.org/10.1134/S1028334X10010320.; ; EDN: https://elibrary.ru/MXETPV
8. Bondur V.G., Garagash I.A., Gokhberg M.B., Rodkin M.V. (2016) The evolution of the stress state in Southern California based on the geomechanical model and current seismicity. Izvestiya. Physics of the Solid Earth. 52, 1, 117-128. doi:https://doi.org/10.1134/S1069351316010043.; ; EDN: https://elibrary.ru/WPQABP
9. Bondur V.G., Tsidilina M.N., Gaponova E.V., Voronova O.S. (2018) Systematization of Ionospheric, Geodynamic, and Thermal Precursors of Strong (M ≥ 6) Earthquakes Detected from Space. Izvestiya, Atmospheric and Oceanic Physics. 54, 9, 1172-1185. doi:https://doi.org/10.1134/S0001433818090475.; ; EDN: https://elibrary.ru/WUDUIO
10. Bondur V.G., Gokhberg M.B., Garagash I.A., and Alekseev D.A. (2020a) Some challenges of short-term earthquake forecasting and possible solutions. Doklady Earth Sciences. 495, 2, 910-913. doi:https://doi.org/10.1134/S1028334X2012004.; DOI: https://doi.org/10.1134/S1028334X20120041; EDN: https://elibrary.ru/KHHUJK
11. Bondur V.G., Gokhberg M.B., Garagash I.A., Alekseev D.A. (2020b) Revealing short-term precursors of the strong M > 7 earthquakes in Southern California from the simulated stress-strain state patterns exploiting geomechanical model and seismic catalog data. Frontiers in Earth Science. 8, 571700. doi:https://doi.org/10.3389/FEART.2020.571700.; DOI: https://doi.org/10.3389/feart.2020.571700; EDN: https://elibrary.ru/XKLAXV
12. Bondur, V.G., Gokhberg, M.B., Garagash, I.A., Alekseev, D.A. (2021) Early manifestations of short-term precursors in stress-strain state dynamics of Southern California. Izvestiya. Physics of the Solid Earth. 4, 1-13. doi:https://doi.org/10.31857/S0002333721040049.; DOI: https://doi.org/10.1134/S1069351321040042; EDN: https://elibrary.ru/OEGNHN
13. Chen K., Avouac J.-P. Aati S., Milliner C., Zheng F., and Shi C. (2020) Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California Shear Zone. Nature Comms. 11, 22. doi:https://doi.org/10.1038/s41467-019-13750-w.; ; EDN: https://elibrary.ru/ATGNDD
14. Clayton, R. W., T. Heaton, M. Kohler, M. Chandy, R. Guy, and J. Bunn. (2015). Community Seismic Network: a dense array to sense earthquake strong motions. Seismological Research Letters. 86, 1354-1363. doi:https://doi.org/10.1785/0220150094.
15. Dieterich J.H. (1992) Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics. 211, 115-134.
16. Garagash I.A. (2000) Application of azimuthal variations of seismic waves velocity for the seismic hazard monitoring in Kamchatka. In Problems in seismicity of the Far East. Petropavlovsk-Kamchatsky, 164-175.
17. Gokhberg, M.B., Garagash, I.A., Nechaev Yu.V., Rogozhin E.A., Yunga S.L. (2004) Geomechanical model of the China-Lake seismic cluster in Southern California. In Research in geophysics. To the 75-th anniversary of the O.Yu. Schmidt Joint Institute of Physics of the Earth. Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia, 90-98.
18. Hutton, L.K., J. Woessner, and E. Hauksson. (2010) Seventy-Seven Years (1932 - 2009) of Earthquake Monitoring in Southern California. Bull. Seismol. Soc. Am. 100, 2, 423-446. doi:https://doi.org/10.1785/0120090130.
19. Itasca Consulting Group, Inc. FLAC3D - Fast Lagrangian Analysis of Continua in 3 Dimensions, Ver. 3.1, User’s Manual. 2006. Minneapolis: Itasca.
20. Kato A., and Ben-Zion Y. (2021) The generation of large earthquakes. Nat Rev Earth Environ. 2, 26-39. https://doi.org/10.1038/s43017-020-00108-w; ; EDN: https://elibrary.ru/OQPCQK
21. Main, I.G., Bell, A.F., Meredith, A.F., Geiger, S, and Touati, S. (2012) The dilatancy-diffusion hypothesis and earthquake predictability. Geological Society, London, Special Publications, 367, 215-230. doi:https://doi.org/10.1144/SP367.15; ; EDN: https://elibrary.ru/RIOHPD
22. Mogi K. (1985) Earthquake Prediction. Tokyo: Academic Press.
23. Molchan G., and Keilis-Borok V. (2008) Seismology Earthquake prediction: probabilistic aspect. Geophys. J. Int. 173, 1012-1017.; DOI: https://doi.org/10.1111/j.1365-246X.2008.03785.x; EDN: https://elibrary.ru/LLJQBL
24. Myachkin V.A., Kostrov B.V., Sobolev G.A., Shamina O.G. (1975) Principles of source physics and earthquakes precursors. In Physics of earthquake focus. Moscow. Nauka, 6-29.
25. Parsons T. (2006) Tectonic stressing in California modeled from GPS observations. J. Geophys. Res. 111, B03407.
26. Sobolev G. A. (1993) Fundamentals of Earthquake Forecast. Moscow. Nauka, 313 p.
27. Sobolev G.A. and Ponomarev A.V. (2003) Physics of Earthquakes and Precursors. Moscow. Nauka, 270 p.
28. Sobolev, G.A. (2019) Avalanche Unstable Fracturing Formation Model. Izv., Phys. Solid Earth. 55, 138-151. doi:https://doi.org/10.1134/S1069351319010117; ; EDN: https://elibrary.ru/HQQGYG
29. Wallace, R.E., ed. (1990) The San Andreas fault system, California: U.S. Geological Survey Professional Paper 1515. http://pubs.usgs.gov/pp/1988/1434/.
30. Yoon C.E., Yoshimitsu, N., Ellsworth, W.L., and Beroza G.C. (2019) Foreshocks and mainshock nucleation of the 1999 Mw 7.1 Hector Mine, California, earthquake. J. Geophys. Res. Solid Earth. 124, 1569-1582.