CONJUGATE PROPERTIES OF PI3/PS6 PULSATIONS ACCORDING TO ANTARCTICA-GREENLAND OBSERVATIONS
Abstract and keywords
Abstract (English):
We consider interhemispheric properties of fine structure of substorm – quasi-periodic geomagnetic fluctuations, Pi3 pulsations, using data from conjugate magnetometers in Antarctica and Greenland. Pi3 pulsations are found to accompany both the substorm expansion/recovery phases and the steady magnetospheric convection (SMC) events. The epicenter of Pi3 power is at the same latitude as maximal amplitude of magnetic bays. The interhemispheric properties of Pi3 pulsations are not consistent: in some events, coherent in-phase magnetic oscillations are observed in both hemispheres, in others, periodic variations are observed in one hemisphere only. When Pi3 pulsations are observed in both conjugate sites, their H-components are in-phase, which corresponds to the fundamental mode of field line oscillations between high-conductive ionospheres. Conjugate observations have provided an additional information on an elusive mechanism of Pi3 pulsations.

Keywords:
Pi3 pulsations, conjugate observations, steady magnetospheric convection
Text
Publication text (PDF): Read Download
References

1. Buchert S., G. Haerendeal, D. Baumjohann (1990), A model for the electric fields and currents during a strong Ps6 pulsation event, J. Geophysical Research, 95, 3733-3743.

2. Cheng C.-C., I.R. Mann, W. Baumjohann (2014), Association of consecutive Pi2-Ps6 band pulsations with earthward fast flows in the plasma sheet in response to IMF variations, J. Geophys. Res., 119, 3617-3640, doihttps://doi.org/10.1002/2013JA019275.

3. Clauer C.R., H. Kim, K. Deshpande, Z. Xu, D. Weimer, S. Musko, G. Crowley, C. Fish, R. Nealy, T.E. Humphreys, J.A Bhatti, A.J. Ridley (2014), An autonomous adaptive low-power instrument platform (AAL-PIP) for remote high-latitude geospace data collection, Geosci. Instrum. Method. Data Syst., 3, 211-227, https://doi.org/10.5194/gi-3-211-2014.

4. DeJong A.D., Cai X., Clauer R.C., Spann J.F. (2007), Aurora and open magnetic flux during isolated substorms, sawteeth, and SMC events, Ann. Geophys., 25, 1865-1876, https://doi.org/10.5194/angeo-25-1865-2007.

5. Freeman M.P., C. Forsyth, I.J. Rae (2019), The influence of substorms on extreme rates of change of the surface horizontal magnetic field in the United Kingdom. Space Weather, 17, 827-844. https://doi.org/10.1029/2018SW00214

6. Guido T., B. Tulegenov, A.V. Streltsov (2014), Large-amplitude ULF waves at high latitudes, J. Atmospheric and Solar-Terrestrial Physics, 119, 102-109, doihttps://doi.org/10.1016/j.jastp.2014.07.006.

7. Han D.-S., H.-G. Yang, Z.-T. Chen, T. Araki, M. W. Dunlop, M. Nose, T. Iyemori, Q. Li, Y.-F. Gao, K. Yumoto (2007), Coupling of perturbations in the solar wind density to global Pi3 pulsations: A case study, J. Geophys. Res., 112, A05217, doihttps://doi.org/10.1029/2006JA011675.

8. James M.K., T.K. Yeoman, P.N. Mager, D.Y. Klimushkin (2013), The spatio-temporal characteristics of ULF waves driven by substorm injected particles, J. Geophys. Res., 118, 1737-1749, doihttps://doi.org/10.1002/jgra.50131.

9. Keiling A. (2009), Alfvén waves and their roles in the dynamics of the Earth’s magnetotail: A review. Space Sci. Rev., 142, 73-156, https://doi.org/10.1007/s11214-008-9463-8.

10. Kozyreva O.V., V.A. Pilipenko, V.B. Belakhovsky, Ya.A. Sakharov (2018), Ground geomagnetic field and GIC response to March 17 2015 storm, Earth, Planetary and Space, 70:157, doi:https://doi.org/10.1186/s40623-018-0933-2.

11. Kleimenova N.G., O.V. Kozyreva, K. Kauristie, J. Manninen, A. Ranta (2002), Case studies on the dynamics of Pi3 geomagnetic and riometer pulsations during auroral activations, Annales Geophysicae, 20: 151-159.

12. Kleimenova N.G., E.E. Antonova, O.V. Kozyreva, L.M. Malysheva, T.A. Kornilova, I.A. Kornilov (2012), Wave structure of magnetic substorms at high latitudes. Geomagn. Aeron. 52, 746-754, https://doi.org/10.1134/S0016793212060059.

13. Leonovich A.S., V.A. Mazur (2005), Why do ultra-low-frequency MHD oscillations with a discrete spectrum exist in the magnetosphere? Annales Geophysicae, 23, 1075-1079.

14. Lysak R.L., Y. Song (2002) Energetics of the ionospheric feedback interaction, J. Geophys. Res., 107, 1160, doihttps://doi.org/10.1029/2001JA000308.

15. Mager P.N., D.Yu. Klimushkin, V.A. Pilipenko, S. Schäfer (2009) Field-aligned structure of poloidal Alfvén waves in a finite pressure plasma, Ann. Geophys., 27, 3875-3882.

16. Martines-Bedenko V.A., V.A. Pilipenko, M.J. Engebretson, M.B. Moldwin (2017), Time-spatial correspondence between Pi2 wave power and ultra-violet aurora bursts, Russian Journal of Earth Sciences, 17, no. 4, ES4003, 1-14, doi:https://doi.org/10.2205/2017ES000606.

17. Mazur N.G., E.N. Fedorov, V.A. Pilipenko (2014), Longitudinal structure of ballooning MHD disturbances in a model magnetosphere, Cosmic Research (Kosmicheskie issledovanija), 52, 175-184.

18. Milan S.E., Carter J.A., Sangha H., Bower G.E., Anderson B.J. (2021). Magnetospheric flux throughput in the Dungey cycle: Identification of convection state during 2010. J. Geophysical Research, 126, e2020JA028437. https://doi.org/10.1029/2020JA028437.

19. Newell P.T., J.W. Gjerloev (2011), Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power, J. Geophys. Res., 116, A12211, doihttps://doi.org/10.1029/2011JA016779.

20. Partamies N., T.I. Pulkkinen, R.L. McPherron, K. McWilliams, C.R. Bryant, E. Tanskanen, H.J. Singer, G.D. Reeves, M.F. Thomsen (2009), Statistical survey on sawtooth events, SMCs and isolated substorms, Advances in Space Research, 44, 376-384

21. Pilipenko V.A., M.J. Engebretson, M.D. Hartinger, E.N. Fedorov, S. Coyle (2021), Electromagnetic fields of magnetospheric disturbances in the conjugate ionospheres: Current/voltage dichotomy, in “Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System”, ed. by T. Nishimura, O. Verkhoglyadova, Y. Deng, Elsevier B.V., Amsterdam, ISBN: 9780128213667.

22. Pilipenko V., N. Mazur, E. Fedorov, M.J. Engebretson, D.L. Murr (2005), Alfven wave reflection in a curvilinear magnetic field and formation of Alfvenic resonators on open field lines, J. Geophys. Res., 110, A10S05, doihttps://doi.org/10.1029/2004JA010755.

23. Pilipenko V.A., D.Yu. Klimushkin, P.N. Mager, M.J. Engebretson, O.V. Kozyreva (2016), Generation of resonant Alfven waves in the auroral oval, Annales Geophysicae, 34, 241-248, doihttps://doi.org/10.5194/angeo-34-241-2016.

24. Pilipenko V.A. (2021), Space weather impact on ground-based technological systems. Solar-Terrestrial Physics. 7, 68-104, DOI:https://doi.org/10.12737/stp-73202106.

25. Saito T. (1978). Long-period irregular magnetic pulsation, Pi3. Space Sci. Rev. 21, 427-467 https://doi.org/10.1007/BF00173068

26. Solovyev S.V., D.G. Baishev, E.S. Barkova, M.J. Engebretson, J.L. Posch, W. Hughes, K. Yumoto, V.A. Pilipenko (1999), Structure of disturbances in the dayside and nightside ionosphere during periods of negative interplanetary magnetic field Bz, J. Geophys. Res., 104, 28019-28039.

27. Streltsov A., Pedersen T., Mishin E., Snyder A. (2010), Ionospheric feedback instability and substorm development. J. Geophys. Res. 115, 205. http: //dx.doi.org/10.1029/2009JA014.

28. Vaivads A., W. Baumjohann , E. Georgescu, G. Haerendel, N. Nakamura, M.R. Lessard, P. Eglitis, L.M. Kistler, R.E. Ergun (2001), Correlation studies of compressional Pc5 pulsations in space and Ps6 pulsations on the ground, J. Geophysical Research, 106, 29797-29806.

29. Wei D., Dunlop M.W., Yang J., Dong X., Yu Y., Wang T. (2021). Intense dB/dt variations driven by near-Earth bursty bulk flows (BBFs): A case study. Geophysical Research Letters, 48, e2020GL091781. https://doi.org/10.1029/2020GL09178.

30. Wu Q., Du A.M., Volwerk M., Tsurutani B.T., Ge Y.S. (2017), The distribution of oscillation frequency of magnetic field and plasma parameters in BBFs: THEMIS statistics, J. Geophys. Res., 122, 4325-4334, doihttps://doi.org/10.1002/2016JA023089.

Login or Create
* Forgot password?