Russian Federation
Russian Federation
The complex study of the bottom sediments and near-bottom water layer of the Gdansk Deep revealed the Ca maximum anomaly, marking the discharge of the Oxford-Titonian aquifer. The discharge zone is associated with gas-saturated sediments, which is caused by a common pathway of aqueous and gaseous fluids upraise along tectonic faults. The detailed survey of a seabed topography and acoustic survey of the sediments upper layer helped to specify the area of gas-saturated sediments and the size of the pockmarks.
Submarine groundwater discharge, pockmark, Gdansk Deep, ground water, bottom sediments
1. Aleksandrov, S., A. Gusev, Y. Kudryavtseva, A. Semenova (2021), Planktonic and benthic communities of the southeastern part of the Baltic Sea in the summer of 2019, Trudy AtlantNIRO, 5, no. 1, 1-14.
2. Blazhchishin, A. (1998), Paleogeography and Evolution of Late Quaternary Sedimentation in the Baltic Sea, Kaliningrad, Yantarny skaz, p. 160.
3. Bulczak, A., D. Rak, B. Schmidt, J. Beldowski (2016), Observations of near-bottom currents in Bornholm basin, Slupsk furrow and Gdansk deep, Deep Sea Research Part II: Topical Studies in Oceanography, 128, 96-113, doihttps://doi.org/10.1016/j.dsr2.2015.02.021.
4. Bussmann, I., E. Suess (1998), Groundwater seepage in Eckernförde Bay (Western Baltic Sea): Effect on methane and salinity distribution of the water column, Continental shelf research, 18, no. 14-15, 1795-1806, doihttps://doi.org/10.1016/S0278-4343(98)00058-2.
5. Carman, R., L. Rahm (1997), Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic proper, Journal of Sea Research, 37, no. 1-2, 25-47, doi:https://doi.org/10.1016/S1385-1101(96)00003-2.
6. Cathles, L., Z. Su, D. Chen (2010), The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration, Marine and petroleum Geology, 27, no. 1, 82-91, doihttps://doi.org/10.1016/j.marpetgeo.2009.09.010.
7. Dorokhov, D., M. Ulyanova, I. Y. Dudkov, E. Egoshina (2021), Integrated Research of the Southeastern Baltic Sea during the Cruise 47 of the R/V Akademik Nikolaj Strakhov, Oceanology, 61, no. 1, 142-143, doi:https://doi.org/10.1134/S0001437021010057.
8. Dearman, W.R., 1991, Engineering geological mapping, Butterworth-Heinemann, Oxford, 387 p.
9. Elken J, Matthäus W (2008). Baltic Sea Oceanography. In: Assessment of Climate Change for the Baltic Sea Basin. A Annexes. A.1 Physical System Description. - Springer-Verlag Berlin Heidelberg, pp 379-386.
10. Emelyanov, E. M. (1998). Ocean Barrier Areas. Sedimentation and Ore Formation, Geoecology, Yantarnyj Skaz, Kaliningrad, 416 pp. [In Russian].
11. Emelyanov, E. (2002). Geology of the Gdansk Basin, Baltic Sea, Yantarnyi skaz, Kaliningrad, 496 pp.
12. Experimental-production works of the geological survey on the scale 1:500000 in the south-eastern part of the Baltic Sea. Technical Report. VNIIMORGEO, Baltic Marine Geological and Geophysical Expedition, 1978. 361 p.
13. Grigyalis, A., ed. (1991). Geology and geomorphology of the Baltic Sea. Consolidated explanatory note to the geological maps scale 1:500 000. Leningrad, Nedra, 1991, 420 p.
14. Gudelis, V., Emelyanov, E. (eds), 1976. Geology of the Baltic Sea. Vilnius, Mokslas Publishers, 384 pp. [In Russian].
15. Grigyalis, A.A., Kondratas, A.R. ed. (1983) State geological map of the USSR on a scale of 1: 200000. Seriya Pribaltiyskaya, List N-34-VIII, no. IX, M., - 116 p.
16. Gusev, A., E. Jurgens-Markina (2012), Growth and production of the bivalve Macoma balthica (Linnaeus, 1758) (Cardiida: Tellinidae) in the southeastern part of the Baltic Sea, Russian Journal of Marine Biology, 38, no. 1, 56-63, doihttps://doi.org/10.1134/S1063074012010063.
17. Hovland, M. (2002), On the self-sealing nature of marine seeps, Continental Shelf Research, 22, no. 16, 2387-2394, doihttps://doi.org/10.1016/S0278-4343(02)00063-8.
18. Idczak, J., A. Brodecka-Goluch, K. Lukawska-Matuszewska, B. Graca, N. Gorska, Z. Klusek, P. D. Pezacki, J. Bolalek (2020), A geophysical, geochemical and microbiological study of a newly discovered pockmark with active gas seepage and submarine groundwater discharge (MET1BH, central Gulf of Gdańsk, southern Baltic Sea), Science of The Total Environment, 742, 140306, doihttps://doi.org/10.1016/j.scitotenv.2020.140306.
19. Khandros, G., Y. Shaydurov (1980). Chemical analysis of marine sediments, Nauka, Moscow, 50 pp. (in Russian)
20. Kondratas, A., ed. (1970), Hydrogeology of the USSR, vol. XLV, Moskow, Nedra, 41-57 pp.
21. Krek, A., A. Gusev, E. Krek, V. Krechik, M. Kapustina, A. Kondrashov, I. Dudkov (2021), The pathway of the water exchange over the Gdańsk-Gotland Sill of the Baltic Sea and its impact on habitat formation during the stagnation period, Oceanologia, 63, no. 2, 163-178, doi:https://doi.org/10.1016/j.oceano.2020.11.003.
22. Krek, A., V. Krechik, A. Danchenkov, G. Mikhnevich (2020), The role of fluids in the chemical composition of the upper holocene sediment layer in the russian sector of the South-East Baltic, Russian Journal of Earth Sciences, 20, no. 6, doihttps://doi.org/10.2205/2020ES000719.
23. Krek, A., M. Ulyanova, E. Bubnova, V. Krechik, D. Ryabchuk, A. Danchenkov, D. Churin, M. Kapustina, E. Tkacheva, L. Khatmullina, et al. (2019), Geoecological conditions in the Baltic Sea in 2017, Oceanology, 59, no. 1, 167-169, doihttps://doi.org/10.1134/S0001437019010065.
24. Lidzbarski, M. (2011), Groundwater discharge in the Baltic Sea basin, Geochemistry of Baltic Sea Surface and Sediments. Polish Geological Institute-National Research Insitute, Warsaw, Poland, pp. 138-145.
25. Mikhnevich, G., V. Chugaevich, O. Tupeiko (2013), Identification of areas by submarine unloading groundwater of the Paleogene horizon into the Baltic Sea according to hydrochemical data, in Ekologo-geograficheskiye problemy regionov Rossii, Samara State University of Social Sciences and Education, Samara, pp. 71-75.
26. Mikhnevich, G., V. Krechik, A. Krek, A. Danchenkov (2019), The role of submarine groundwater discharge in the formation of marine ecosystems in the southeastern Baltic, in Problemy regional’nogo razvitiya v nachale XXI veka, IKBFU, Kaliningrad, pp. 244-252.
27. Mohrholz, V., M. Naumann, G. Nausch, S. Krüger, U. Gräwe (2015), Fresh oxygen for the Baltic Sea-An exceptional saline inflow after a decade of stagnation, Journal of Marine Systems, 148, 152-166, doi:https://doi.org/10.1016/j.jmarsys.2015.03.005.
28. Naumann, M., Gräwe, U., Mohrholz, V., Kuss, J., Siegel, H., Waniek, J.J., Schulz-Bull, D.E., 2019. Hydrographic-hydrochemical assessment of the Baltic Sea 2018. Mar. Sci. Rep. 110. http://doi.org/10.12754/msr-2019-0110.
29. Otmas, A., V. Desyatkov, V. Chegesov, V. Makarevich (2006), Tectonic zoning of the Kaliningrad Oblast and adjacent shelf, Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 8, 13-24.
30. Petrov, O. V., (Ed.) (2010), Atlas of Geological and Environmental Geological Maps of the Russian Area of the Baltic Sea, 78 pp. VSEGEI, SPb. (in Russian)
31. Pimenov, N. V., M. O. Ulyanova, T. A. Kanapatsky, E. F. Veslopolova, P. A. Sigalevich, V. V. Sivkov (2010), Microbially mediated methane and sulfur cycling in pockmark sediments of the Gdansk Basin, Baltic Sea, Geo-Marine Letters, 30, no. 3, 439-448, doihttps://doi.org/10.1007/s00367-010-0200-4.
32. Schlüter, M., E. J. Sauter, C. E. Andersen, H. Dahlgaard, P. R. Dando (2004), Spatial distribution and budget for submarine groundwater discharge in Eckernförde Bay (Western Baltic Sea), Limnology and Oceanography, 49, no. 1, 157-167, doihttps://doi.org/10.4319/lo.2004.49.1.0157.
33. Sviridov, N. I. (1990), Geological and Physical Nature of Geoacoustic Anomalies in the Upper Part of the Sedimentary Sheath of the Baltic Sea, Geoacoustic and Gas-Lithogeochemical Studies in the Baltic Sea. Geological Features of Fluid Discharge Areas, Geodekyan A. A., Trotsyuk V. Y., Blazhchishin A. I. (Eds.) p. 47-56, IO AN USSR, Moscow. (in Russian)
34. Sviridov, N.I., Emelyanov, E.M. (2000), Lithofacial complexes of Quaternary deposits in the central and southeastern Baltic Sea. Lithology and Mineral Resources 35(3): 211-231
35. Tersiev, F., ed. (1992), Hydrometeorology and Hydrochemistry of the USSR Seas. Gidrokhimicheskiye usloviya i okeanologicheskiye osnovy formirovaniya biologicheskoy produktivnosti, vol. III, Hydrometizdat, 434 pp.
36. Triponis, A. (1973), Gas-biochemical anomalies of aquifers in the zone of intense water exchange and their relationship with deep oil and gas content, in Voprosy neftegazonosnosti Pribaltiki, Mintis, Vilnius, pp. 169-184,.
37. Tupeiko, O. (2012), The use of a hydrochemical method for detecting areas of submarine groundwater discharge into the Baltic Sea, Shag v nauku, IKBFU, Kaliningrad 2, P 32-39.
38. Ulyanova, M., V. Sivkov, T. Kanapatskij, P. Sigalevich, N. Pimenov (2012), Methane fluxes in the southeastern Baltic Sea, Geo-Marine Letters, 32, no. 5-6, 535-544, doihttps://doi.org/10.1007/s00367-012-0304-0.
39. Uścinowicz, S. (2011), Geochemistry of Baltic Sea surface sediments, Polish Geological Institute-National Research Institute.
40. Whiticar, M. J. (2002), Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and freshwater seepages in Eckernförde Bay, Marine Geology, 182, no. 1-2, 29-53, doihttps://doi.org/10.1016/S0025-3227(01)00227-4.
41. Zagorodnykh, V. A. (2011), Neotectonics, State Geological Map of the Russian Federation. Scale 1: 1,000,000 (third generation). Central European Series. Sheet N-(34)-Kaliningrad, Explanatory Note. Lukyanova N. V. et al. (Eds.) p. 93-98, VSEGEI Map-Making Factory, SPb. (in Russian)
42. Zektzer, I., B. Kudelin (1965), On the issue of underground runoff into the Baltic Sea, Trudy GGI, 122, 82.