from 01.01.2018 to 01.01.2022
Pokrov, Nizhny Novgorod, Russian Federation
from 01.01.2003 to 01.01.2022
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Nizhniy Novgorod, Nizhny Novgorod, Russian Federation
from 01.01.2012 to 01.01.2022
Nizhniy Novgorod, Nizhny Novgorod, Russian Federation
from 01.01.2021 until now
V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch
Nizhny Novgorod, Nizhny Novgorod, Russian Federation
UDK 551.466.8 Внутренние волны, внутренние приливные волны
GRNTI 37.25 Океанология
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
OKSO 05.06.01 Науки о Земле
BBK 260 Земля в целом
TBK 6325 Гидрофизика. Гидрология
BISAC NAT031000 Seashells
Estimates of the barotropic tidal body force for diurnal and semidiurnal tides are obtained for the Sea of Okhotsk for the summer and winter periods. It is shown that in the study area, the tidal body force for diurnal tides is significantly greater than for semidiurnal ones. The maximum values of this quantity can reach about 2-8 m2 s-2, and these values are typical for areas with a sharp bathymetric gradient. A comparison of the tidal body force for the two seasons showed noticeable differences. The features of the transformation of a barotropic tidal wave propagating in the zone of large values of the tidal body force for the K1, O1, M2 tidal constituents are demonstrated. Numerical simulations indicate that baroclinic tidal waves are effectively generated in this area, and intense short-period internal waves are likely to occur.
Sea of Okhotsk, tidal body force, multicomponent barotropic tide, internal waves, numerical modeling.
1. Bai, X., Z. Liu, X. Li, and J. Hu (2014), Generation sites of internal solitary waves in the southern Taiwan Strait revealed by MODIS true-colour image observations, International Journal of Remote Sensing, 35(11-12), 4086- 4098, doihttps://doi.org/10.1080/01431161.2014.916453.; ; EDN: https://elibrary.ru/UUSIAN
2. Baines, P. G. (1973), The generation of internal tides by flat-bump topography, Deep Sea Research and Oceanographic Abstracts, 20(2), 179-205, doihttps://doi.org/10.1016/0011-7471(73)90050-8.
3. Baines, P. G. (1982), On internal tide generation models, Deep Sea Research Part A. Oceanographic Research Papers, 29(3), 307-338, doihttps://doi.org/10.1016/0198-0149(82)90098-X.
4. Baines, P. G. (1995), Topographic effects in stratified flows, 558 pp., Cambridge University Press, Cambridge.
5. Boyer, T. P., H. E. García, R. A. Locarnini, M. M. Zweng, et al. (2018), World Ocean Atlas 2018. Temperature, Salinity, NOAA National Centers for Environmental Information. Dataset, https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:NCEI-WOA18, Accessed: 08.08.2022.
6. da Silva, J. C., A. L. New, and A. Azevedo (2007), On the role of SAR for observing “local generation” of internal solitary waves off the Iberian Peninsula, Canadian Journal of Remote Sensing, 33(5), 388-403, doi:041.; DOI: https://doi.org/10.5589/m07-041; EDN: https://elibrary.ru/NGYXBH
7. Deyeva, R. A. (1972), Catalog of harmonic and non-harmonic constant tides of domestic waters of the Far East, Trudy DVNIGMI, (18), 248, (in Russian).
8. Egbert, G. D., and S. Y. Erofeeva (2002), Efficient Inverse Modeling of Barotropic Ocean Tides, Journal of Atmospheric and Oceanic Technology, 19(2), 183-204, doi:10/bh84s5.
9. Gustafsson, K. E. (2001), Computations of the energy flux to mixing processes via baroclinic wave drag on barotropic tides, Deep Sea Research Part I: Oceanographic Research Papers, 48(10), 2283-2295, doi:0637(01)00008-5.; EDN: https://elibrary.ru/AQWCSV
10. Kokoulina, M. V., O. E. Kurkina, E. A. Rouvinskaya, and A. A. Kurkina (2022), Certificate of state registration of computer programs no 2022663958 “software package for calculating the body force in a stratified sea with an uneven bottom based on international atlases and models”, RF. 09.08.2022.
11. Kowalik, Z., and I. Polyakov (1998), Tides in the Sea of Okhotsk, Journal of Physical Oceanography, 28(7), 1389-1409, doi:10/cp3x47.
12. Kurkina, O., E. Rouvinskaya, T. Talipova, and T. Soomere (2017a), Propagation regimes and populations of internal waves in the Mediterranean Sea basin, Estuarine, Coastal and Shelf Science, 185, 44-54, doihttps://doi.org/10.1016/j.ecss.2016.12.003.; ; EDN: https://elibrary.ru/XZUXVH
13. Kurkina, O., T. Talipova, T. Soomere, A. Giniyatullin, and A. Kurkin (2017b), Kinematic parameters of internal waves of the second mode in the South China Sea, Nonlinear Processes in Geophysics, 24(4), 645-660, doihttps://doi.org/10.5194/npg-24-645-2017.; ; EDN: https://elibrary.ru/PSEQLZ
14. Kurkina, O. E., T. G. Talipova, T. Soomere, A. A. Kurkin, and A. V. Rybin (2017c), The impact of seasonal changes in stratification on the dynamics of internal waves in the Sea of Okhotsk, Estonian Journal of Earth Sciences, 66(4), 238-255, doihttps://doi.org/10.3176/earth.2017.20.; ; EDN: https://elibrary.ru/RXVDPF
15. Kuznetsov, P. D., E. A. Rouvinskaya, O. E. Kurkina, and A. A. Kurkin (2021), Transformation of baroclinic tidal waves in the conditions of the shelf of the far eastern seas, in IOP Conference Series: Earth and Environmental Science, vol. 946, p. 012024, IOP Publishing, doihttps://doi.org/10.1088/1755-1315/946/1/012024.; ; EDN: https://elibrary.ru/QDMREP
16. Lamb, K. G. (1994), Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge, Journal of Geophysical Research: Oceans, 99(C1), 843-864, doihttps://doi.org/10.1029/93JC02514.
17. LeBlond, P. H., and L. A. Mysak (1978), Waves in the Ocean, Elsevier Oceanography Series 20, Elsevier.
18. Lozovatsky, I., Z. Liu, H. Fernando, J. Armengol, and E. Roget (2011), Shallow water tidal currents in close proximity to the seafloor and boundary-induced turbulence, Ocean Dynamics, 62(2), 177-191, doihttps://doi.org/10.1007/s10236-011-0495-3.; ; EDN: https://elibrary.ru/PHNOJV
19. Magalhaes, J. M., and J. C. B. da Silva (2012), SAR observations of internal solitary waves generated at the Estremadura Promontory off the west Iberian coast, Deep Sea Research Part I: Oceanographic Research Papers, 69, 12-24, doihttps://doi.org/10.1016/j.dsr.2012.06.002.; ; EDN: https://elibrary.ru/RPGTVV
20. Moroz, V. V., K. T. Bogdanov, V. I. Rostov, and I. D. Rostov (2010), Electronic Atlas of tides of the marginal seas of the Northern Pacific, Vestnik DVO RAN, 1(149), 102-106, (in Russian).; EDN: https://elibrary.ru/JXFVDR
21. Pichon, A., Y. Morel, R. Baraille, and L. S. Quaresma (2013), Internal tide interactions in the Bay of Biscay: Observations and modelling, Journal of Marine Systems, 109-110, S26-S44, doihttps://doi.org/10.1016/j.jmarsys.2011.07.003.; ; EDN: https://elibrary.ru/RMDYWV
22. Putov, V. F., and G. V. Shevchenko (1998), Specific features of tidal regime on the northeastern shelf of sakhalin island, in Hydrometeorological Processes on a Shelf: Impact Assessment on the Marine Environment, pp. 61-82, DVO RAN, Vladivostok, Russia, (in Russian).
23. Rabinovich, A. B., and A. E. Zhukov (1984), Tidal fluctuations on the northeastern shelf of Sakhalin Island, USSR Oceanology, 24(2), 238-244, (in Russian).
24. Rouvinskaya, E., O. Kurkina, A. Kurkin, and A. Zaytsev (2017), Modeling of internal wave action on offshore platforms for hydrological conditions of the Sakhalin shelf zone, Fundamental and Applied Hydrophysics, 10(4), 61-70, doihttps://doi.org/10.7868/S2073667317040062.; ; EDN: https://elibrary.ru/YKUZKA
25. Rouvinskaya, E. A., D. Y. Tyugin, O. E. Kurkina, and A. A. Kurkin (2018), Mapping of the Baltic Sea by the types of density stratification in the context of dynamics of internal gravity waves, Fundamentalnaya i Prikladnaya Gidrofizika, 11(1), 46-51, doihttps://doi.org/10.7868/S2073667318010057.; ; EDN: https://elibrary.ru/YPJHYQ
26. Rouvinskaya, E. A., O. E. Kurkina, and A. A. Kurkin (2021), Particle transport and dynamic effects during of a baroclinic tidal wave transformation in the conditions of the shelf of the far eastern seas, Ecological Systems and Devices, 11, 109-118, doihttps://doi.org/10.25791/esip.11.2021.1270, (in Russian).; ; EDN: https://elibrary.ru/WVOMCA
27. Schlitzer, R. (2022), Ocean Data View, https://odv.awi.de/.
28. Sherwin, T. J., V. I. Vlasenko, N. Stashchuk, D. Jeans, and B. Jones (2002), Along-slope generation as an explanation for some unusually large internal tides, Deep Sea Research Part I: Oceanographic Research Papers, 49(10), 1787- 1799, doihttps://doi.org/10.1016/s0967-0637(02)00096-1.; DOI: https://doi.org/10.1016/S0967-0637(02)00096-1; EDN: https://elibrary.ru/MCOYMP
29. Shevchenko, G. V. (1996), Quasi-periodic seasonal variability of tide harmonic constants in the Northwestern Sea of Okhotsk, Russian Meteorology and Hydrology, 8, 50-57.
30. Stepanov, D. V. (2017), Estimating the baroclinic Rossby radius of deformation in the Sea of Okhotsk, Russian Meteorology and Hydrology, 42(9), 601-606, doihttps://doi.org/10.3103/s1068373917090072.; DOI: https://doi.org/10.3103/S1068373917090072; EDN: https://elibrary.ru/XOCGJW
31. Vlasenko, V., N. Stashchuk, and K. Hutter (2005), Baroclinic Tides: Theoretical Modeling and Observational Evidence, Cambridge University Press, Cambridge.; DOI: https://doi.org/10.1017/CBO9780511535932; EDN: https://elibrary.ru/UVAHKL
32. Vlasenko, V., N. Stashchuk, M. E. Inall, and J. E. Hopkins (2014), Tidal energy conversion in a global hot spot: On the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break, Journal of Geophysical Research: Oceans, 119(6), 3249-3265, doihttps://doi.org/10.1002/2013jc009708.
33. Wang, W., R. Robertson, Y. Wang, C. Zhao, Z. Hao, B. Yin, and Z. Xu (2022), Distinct Variability between Semidiurnal and Diurnal Internal Tides at the East China Sea Shelf, Remote Sensing, 14(11), 2570, doihttps://doi.org/10.3390/rs14112570.
34. Zhao, X., Z. Xu, M. Feng, Q. Li, P. Zhang, J. You, S. Gao, and B. Yin (2021), Satellite Investigation of Semidiurnal Internal Tides in the Sulu-Sulawesi Seas, Remote Sensing, 13(13), 2530, doihttps://doi.org/10.3390/rs13132530.