Russian Federation
Immanuel Kant Baltic Federal University
Kalinigrad, Russian Federation
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 39.19 Физическая география
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
BISAC SCI SCIENCE
A generalization of historical data for more than 40 years on destructive cyclones observed on the coast of the South-East Baltic Sea has been made. According to the trajectories reconstructed using the HYSPLIT calculation model, cyclones with a northern trajectory, the so-called “diving” cyclones, were identified. A register of such cyclones has been compiled, showing their increasing occurrence: since the 80s of the last century, two such cyclones have passed (1981 and 1983), and since the beginning of thiscentury, over a 22-year period – 14. They differ in a significant acceleration length – about 1000 km from the Gulf of Bothnia to the southeastern coast of the Baltic Sea and have high potential energy. At the same time, atmospheric vortices cause wind waves up to 7–8 meters high. They are associated with significant, sometimes catastrophic, abrasion and retreat of coasts, especially the northern exposure, as well as the destruction of the coastal infrastructure of resort towns, including federal ones, historically concentrated on the northern coast of the Kaliningrad (Sambia) Peninsula of the Kaliningrad Region. The degree of destruction after the impact of each cyclone depends on the prehistory of its formation and development, the height of the surge of coastal waters, and the morphological features of the coast. There are two main scenarios for the development of seasonal storm activity. For example, in the winter season 2011–2012 and 2018–2019 after active cyclones with strong westerly winds of more than 20 m/s, which raised the sea level to +(40–60) cm, the approach of a “diving” cyclone with storm northerly winds caused an instant “splash” of the level up to +(100–120) cm above the ordinary (the marked maximum was 160 cm), which corresponds in order of magnitude to the heights of the beach. The second scenario is associated with the development of a series (cluster) of cyclones. It manifested itself especially clearly in the winter season of 2022, when four “diving” cyclones passed with short windows of good weather. The western cyclone was the final one. On the coast of the Kaliningrad Region, the level rose significantly. Both scenarios of the passage of “diving” cyclones are associated with the greatest storm damage to the coast of the Kaliningrad Region.
storm, “diving” cyclones, coast dynamics, sandy accumulative coast, foredune, sea level, Kaliningrad Region, Baltic Sea, Curonian Spit, coast protection structures
1. Andersson, H. C. (2002), Infuence of long-term regional and large-scale atmospheric circulation on the Baltic sea level, Tellus A, 54(1), 76-88, doihttps://doi.org/10.1034/j.1600-0870.2002.00288.x
2. Averkiev, A. S., and K. A. Klevannyy (2010), A case study of the impact of cyclonic trajectories on sea-level extremes in the Gulf of Finland, Continental Shelf Research, 30(6), 707-714, doihttps://doi.org/10.1016/j.csr.2009.10.010
3. Bastos, A., R. M. Trigo, and S. M. Barbosa (2013), Discrete wavelet analysis of the infuence of the North Atlantic Oscillation on Baltic Sea level, Tellus A: Dynamic Meteorology and Oceanography, doihttps://doi.org/10.3402/tellusa.v65i0.20077
4. Bobykina, V. P. (2018), K metodike nazemnogo monitoringa beregov, Vestnik Baltijskogo Federal’nogo universiteta im I. Kanta, (4), 87-93, (in Russian)
5. Bobykina, V. P., and Z. I. Stont (2014), Sravnenie vozdejstviya na berega Kurshskoj kosy sil’nyh shtormov 2007 i 2012 gg., in Problemy izucheniya i ohrany prirodnogo i kul’turnogo naslediya nacional’nogo parka “Kurshskaya kosa”, edited by I. P. Zhukovskaya, 10, pp. 173-182, Izd-vo BFU im. I. Kanta, Kaliningrad, (in Russian)
6. Bobykina, V. P., and Z. I. Stont (2015a), Winter storm activity in 2011-2012 and its consequences for the Southeastern Baltic coast, Water Resources, 42(3), 371-377, doihttps://doi.org/10.1134/S0097807815030021
7. Bobykina, V. P., and Z. I. Stont (2015b), O zimnej shtormovoj aktivnosti 2011-2012 gg. i eyo posledstviyah dlya Kurshskoj kosy, Vodnye Resursy, pp. 126-136, doihttps://doi.org/10.7868/S0321059615030025, (in Russian)
8. Bobykina, V. P., Z. I. Stont, and A. V. Kileso (2021), Deformations of the seashore of the Curonian Spit (South-East Baltic) under the infuence of storms in the autumn-winter season of 2018-2019, Vestnik Baltijskogo federal’nogo universiteta im. I. Kanta, pp. 73-83, (in Russian)
9. Boldyrev, V. L., V. M. Lashchenkov, and O. I. Ryabkova (1990), Shtormovaya pererabotka beregov Kaliningradskogo poberezh’ya Baltijskogo morya, in Voprosy dinamiki i paleogeografi Baltijskogo morya, vol. 1, pp. 97-127, Institut Geografi Lit. AN, Vilnius, (in Russian)
10. Boldyrev, V. L., V. P. Bobykina, and E. M. Burnashov (2008), State of the Curonian Spit coast after the winter storm period, in Problemy izucheniya i ohrany prirodnogo i kul’turnogo naslediya nacional’nogo parka “Kurshskaya kosa”, edited by I. P. Zhukovskaya, 6, pp. 105-114, Izd-vo BFU im. I. Kanta, Kaliningrad, (in Russian)
11. Cheng, X., S.-P. Xie, H. Tokinaga, and Y. Du (2011), Interannual Variability of High-Wind Occurrence over the North Atlantic, Journal of Climate, 24(24), 6515 - 6527, doihttps://doi.org/10.1175/2011JCLI4147.1
12. Dailidiene, I., L. Davuliene, B. Tilickis, A. Stankevičius, and K. Myrberg (2006), Sea level variability at the Lithuanian coast of the Baltic Sea, Borealis Environment Research, 11, 109-121
13. Danchenkov, A., N. Belov, and Z. Stont (2019), Using the terrestrial laser scanning technique for aeolian sediment transport assessment in the coastal zone in seasonal scale, Estuarine, Coastal and Shelf Science, 223, 105-114, doihttps://doi.org/10.1016/j.ecss.2019.04.044
14. Eremina, T. R. (Ed.) (2016), Baltijskoe more v nastoyashchem i budushchem - klimaticheskie izmeneniya i antropogennoe vozdejstvie, 150 pp., Lema, SPb., (in Russian)
15. Fink, A. H., T. Brücher, V. Ermert, A. Krüger, and J. G. Pinto (2009), The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change, Natural Hazards and Earth System Sciences, 9(2), 405-423, doihttps://doi.org/10.5194/nhess-9-405-2009
16. Gidrometeoizdat (1966), Reference book on the climate of the USSR. Issue 6. Lithuanian SSR and Kaliningrad region. RSFSR. Part III. Wind, 90 pp., Leningrad, (in Russian)
17. Hallegatte, S., N. Ranger, O. Mestre, P. Dumas, J. Corfee-Morlot, C. Herweijer, and R. M. Wood (2011), Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen, Climatic Change, 104(1), 113-137, doihttps://doi.org/10.1007/s10584-010-9978-3
18. Hammarklint, T. (2009), Swedish Sea Level Series - A Climate Indicator, Swedish Meteorological and Hydrological Institute, pp. 1-5
19. Hünicke, B., and E. Zorita (2008), Trends in the amplitude of Baltic Sea level annual cycle, Tellus A: Dynamic Meteorology and Oceanography, 60(1), 154, doihttps://doi.org/10.1111/j.1600-0870.2007.00277.x
20. Jensen, J., and S. H. Müller-Navarra (2008), Storm Surges on the German Coast, in Die Küste, 74, p. 124, Boyens, Heide, Holstein
21. Johansson, M., K. Kahma, H. Boman, and J. Launiainen (2004), Scenarios for sea level on the Finnish coast, Boreal Environment Research, 9, 153-166
22. Kirlis, V. I. (1990), Vozdejstvie uragannyh (ekstremal’nyh) shtormov na otmelye peschanye berega yugo-vostochnoj chasti Baltijskogo morya, in Voprosy dinamiki i paleogeografi Baltijskogo morya, vol. 1, pp. 83-96, Institut Geografi Lit. AN, Vilnius, (in Russian)
23. Majewski, A., Z. Dziadziuszko, and A. Wiśniewska (1983), Monografa Powodzi Sztormowych 1951-1975, Wydawnictwa Komunikacji i Łączności, Warszawą, (in Polish)
24. Medvedev, I. P., and E. A. Kulikov (2021), Extreme Storm Surges in the Gulf of Finland: Frequency-Spectral Properties and the Infuence of Low-Frequency Sea Level Oscillations, Oceanology, 61(4), 459-468, doihttps://doi.org/10.1134/s0001437021040111
25. Nesterov, E. S. (2018), Extreme cyclones in the Atlantic-European region, 102 pp., Gidrometcentr Rossii, Moscow, (in Russian)
26. Pietrek, S. A., J. M. Jasiński, and I. A. Winnicki (2014), Analysis of a storm situation over the southern Baltic Sea using direct hydrometeorological and remote sensing measurements results, Zeszyty Naukowe Akademii Morskiej w Szczecinie, 38(110), 81-88
27. Post, P., and T. Kõuts (2014), Characteristics of cyclones causing extreme sea levels in the northern Baltic Sea, Oceanologia, 56(2), 241-258, doihttps://doi.org/10.5697/oc.56-2.241
28. Rybak, O. L., V. G. Rybka, and Y. S. Shulgin (1979), Osnovnyye polozheniya rascheta iskusstvennykh svobodnykh plyazhey v usloviyakh poberezh’ya baltiki, in Issledovaniya dinamiki splava morskikh poberezhiy. AN SSSR, Komis. po probleme Mirovogo okeana, edited by V. P. Zen’kovich and L. G. Nikiforov, p. 123, Nauka, Moskva, (in Russian)
29. Sepp, M. (2009), Changes in frequency of Baltic Sea cyclones and their relationship with NAO and Climate in Estonia, Borealis Environment Research, 14, 143-151
30. Sepp, M., P. Post, K. Mandla, and R. Aunap (2018), On cyclones entering the Baltic Sea region, Borealis Environment Research, 23, 1-14
31. Soomere, T., and K. Pindsoo (2016), Spatial variability in the trends in extreme storm surges and weekly-scale high water levels in the eastern Baltic Sea, Continental Shelf Research, 115, 53-64, doihttps://doi.org/10.1016/j.csr.2015.12.016
32. Suursaar, Ü., T. Kullas, and R. Szava-Kovats (2009), Wind and wave storms, storm surges and sea level rise along the Estonian coast of the Baltic Sea, in WIT Transactions on Ecology and the Environment, vol. 127, pp. 149-160, WIT Press, Southampton, UK, doihttps://doi.org/10.2495/rav090131
33. Sztobryn, M., B. Weidig, I. Stanisławczyk, J. Holfort, B. Kowalska, M. Mykita, A. Kańska, K. Krzysztofk, and I. Perlet (2009), Negative Surges in the Southern Baltic Sea (Western and Central Parts), in Bundesamtes fur Seeschiffahrt und Hydrographie, 1st ed., pp. 1-71, Hamburg, Germany
34. The BACC II Author Team (Ed.) (2015), Second Assessment of Climate Change for the Baltic Sea Basin, Springer International Publishing, doihttps://doi.org/10.1007/978-3-319-16006-1
35. Wiśniewski, B., and T. Wolski (2011), Physical aspects of extreme storm surges and falls on the Polish coast, Oceanologia, 53, 373-390, doihttps://doi.org/10.5697/oc.53-1-ti.373
36. Wolski, T., and B. Wiśniewski (2020), Geographical diversity in the occurrence of extreme sea levels on the coasts of the Baltic Sea, Journal of Sea Research, 159, 101,890, doihttps://doi.org/10.1016/j.seares.2020.101890