Solid Runoff of the Don River and Suspended Matter Flow Into the Delta During Surges: Statistical Modeling and Comparison in the Low Water Period
Abstract and keywords
Abstract (English):
Statistical modeling of the Don River solid runoff based on water discharge and turbidity measurements obtained at the hydrological station in the village of Razdorskaya for the twelve-year period 2009–2020 was carried out. The WRTDS (Weighted Regressions on Time, Discharge, and Season) and WRTDSKalman (WRTDS with Kalman filtering) methods were applied. The developed statistical model is aimed at solving the problem of the imbalance between the regularity of collecting data on water discharge and data on the concentration of suspended matter by “restoring” the concentration values on days without measurements based on data on the most “similar” days with measurements in terms of time, discharge and season and does not claim to describe a relationship between the concentration of the constituent of interest and discharge. The quality of the developed statistical model and its modification were checked. The average daily concentrations and fluxes of suspended matter were compared with estimates of the volumes of suspended material deposited during periods of recurring strong surge phenomena. A comparative assessment of sea and river factors contributions to the transport and sedimentation of suspended matter in the Don River delta was fulfilled.

Keywords:
suspended matter, sediment runoff, surge phenomena, Don River estuary area, statistical modeling.
Text
Publication text (PDF): Read Download
References

1. AIS GMVO. Avtomatizirovannaya informacionnaya sistema gosudarstvennogo monitoringa vodnyh ob'ektov. - 2014. - URL: https://gmvo.skniivh.ru (data obr. 10.10.2022).

2. Berdnikov S. V., Buhmin D. A., Gus'kov G. E. i dr. Ekspedicionnaya deyatel'nost' YuNC RAN na NIS "Professor Panov"i NIS "Deneb"v Azovskom, Chernom i Kaspiyskom moryah v 2020 godu // Itogi ekspedicionnyh issledovaniy v 2020 godu v Mirovom okeane i vnutrennih vodah. Tezisy dokladov vserossiyskoy nauchnoy konferencii, Moskva, 24-26 fevralya 2021 goda. - Sevastopol' : Morskoy gidrofizicheskiy institut RAN, 2021. - S. 136-144.

3. Berdnikov S. V., Dashkevich L. V., Kulygin V. V. Novoe sostoyanie gidrologicheskogo rezhima Azovskogo morya v HHI veke // Doklady Rossiyskoy akademii nauk. Nauki o Zemle. - 2022. - T. 503, № 1. - S. 65-70. - DOI:https://doi.org/10.31857/S2686739722030057.

4. Berdnikov S. V., Sheverdyaev I. V., Kleschenkov A. V. Analiz postupleniya vzveshennyh veschestv v del'tu Dona pri nagonah na osnove chislennogo modelirovaniya // Materialy Mezhdunarodnoy molodezhnoy nauchnoy konferencii pamyati chlena-korrespondenta RAN D. G. Matishova (g. Rostov-na-Donu, 4-6 sentyabrya 2018 g.) - Rostov-na-Donu : YuNC RAN, 2018. - S. 18-23.

5. Bronfman A. M., Hlebnikov E. P. Azovskoe more. Osnovy rekonstrukcii. - Leningrad : Gidrometeoizdat, 1985. - S. 272.

6. Varencova N. A., Kireeva M. B., Frolova N. L. i dr. Prognoz pritoka vody k Cimlyanskomu vodohranilischu v period polovod'ya v sovremennyh klimaticheskih usloviyah: problemy i vosproizvodimost' // Vodnye resursy. - 2020. - T. 47, № 6. - S. 694-709. - DOI:https://doi.org/10.31857/S0321059620060152.

7. Volovik S. P., Korpakova I. G., Lavrenova E. A. i dr. Ekosistema Azovskogo morya: rezhim, produktivnost', problemy upravleniya. Ch. 1: Rezhim i produktivnost' v period do zaregulirovaniya stoka rek. - Krasnodar : Kubanskiy gos. un-t, 2008. - S. 347.

8. Volovik S. P., Korpakova I. G., Lavrenova E. A. i dr. Ekosistema Azovskogo morya: rezhim, produktivnost', problemy upravleniya. Ch. 2: Klimat i vodnye resursy basseyna vo vtoroy polovine XX veka. - Krasnodar : Kubanskiy gos. un-t, 2010. - S. 393.

9. Georgiadi A. G., Milyukova I. P., Kashutina E. A. Sovremennye i scenarnye izmeneniya rechnogo stoka v basseyne Dona // Vodnye resursy. - 2020. - T. 47, № 6. - S. 651-662. - DOI:https://doi.org/10.31857/s0321059620060061.

10. Gidrometeorologicheskiy spravochnik Azovskogo morya / pod red. A. A. Aksenova. - Leningrad : Gidrometeoizdat, 1962. - S. 856.

11. Gidrometeorologiya i gidrohimiya morey SSSR. Tom 5. Azovskoe more / pod red. N. P. Goptareva, A. I. Simonova. - Sankt-Peterburg : Gidrometeoizdat, 1991.

12. Dzhamalov R. G., L.Frolova N., Kireeva M. B. Sovremennye izmeneniya vodnogo rezhima basseyna Dona // Vodnye resursy. - 2013. - T. 40, № 6. - S. 544-556. - DOI:https://doi.org/10.7868/s0321059613060047.

13. Kleschenkov A. V. Osobennosti tverdogo stoka r. Don v sovremennyy malovodnyy period // Tret'i vinogradovskie chteniya. Grani gidrologii. Sbornik dokladov mezhdunarodnoy nauchnoy konferencii pamyati vydayuschegosya russkogo gidrologa Yuriya Borisovicha Vinogradova. - SPb : Naukoemkie tehnologii, 2018. - S. 591-594.

14. Kleschenkov A. V., Gerasyuk V. S., Kulygin V. V. i dr. Vzveshennoe veschestvo vod ot Cimlyanskogo vodohranilischa do Taganrogskogo zaliva v period dlitel'nogo malovod'ya 2006-2020 gg. // Nauka Yuga Rossii. - 2023. - T. 19, № 1. - S. 29-39. - DOI:https://doi.org/10.7868/25000640230104.

15. Lihtanskaya N. V., Berdnikov S. V. Ispol'zovanie programmnogo kompleksa EGRET dlya ocenki potokov vzveshennyh veschestv s rechnym stokom // Ekologiya. Ekonomika. Informatika. Seriya: Sistemnyy analiz i modelirovanie ekonomicheskih i ekologicheskih sistem. - 2022. - T. 1, № 7. - S. 32-37. - DOI:https://doi.org/10.23885/2500-395X-2022-1-7- 32-37.

16. Matishov G. G. Klimat, vodnye resursy i rekonstrukciya gidrotehnicheskih sooruzheniy s uchetom interesov naseleniya, rybolovstva i sel'skogo hozyaystva, sudohodstva i energetiki: Doklad na rasshirennom zasedanii Prezidiuma Yuzhnogo nauchnogo centra RAN. - YuNC RAN, 2016. - S. 64.

17. Mihaylov V. N., Mihaylova M. V. Vliyanie mnogoletnih izmeneniy morskih faktorov na ust'ya rek // Vodnye resursy. - 2015. - T. 42, № 4. - S. 367-379. - DOI:https://doi.org/10.7868/s0321059615040082.

18. Rodionov N. A. Gidrologiya ust'evoy oblasti Dona. - Moskva : Gidrometeoizdat, 1958. - S. 95.

19. Sorokina V. V. Osobennosti terrigennogo osadkonakopleniya v Azovskom more vo vtoroy polovine XX veka. - 2006. - S. 216.

20. Sorokina V. V., Berdnikov S. V. Matematicheskoe modelirovanie terrigennogo osadkonakopleniya v Azovskom more // Okeanologiya. - 2008. - T. 48, № 3. - S. 456-466.

21. Sorokina V. V., Ivlieva O. V., Lur'e P. M. Dinamika stoka na ust'evyh uchastkah rek Don i Kuban' vo vtoroy polovine HH veka // Vestnik Yuzhnogo nauchnogo centra. - 2006. - T. 2, № 2. - S. 58-67. - DOI:https://doi.org/10.23885/1813- 4289-2006-2-2-58-67.

22. Sheverdyaev I. V., Kleschenkov A. V. Vyyavlenie vklada nagonnyh yavleniy v postuplenie tyazhelyh metallov v del'tu Dona // Morskoy gidrofizicheskiy zhurnal. - 2020. - T. 36, № 5. - S. 582-594. - DOI:https://doi.org/10.22449/0233-7584- 2020-5-582-594.

23. Ator S. W., García A. M., Schwarz G. E., et al. Toward Explaining Nitrogen and Phosphorus Trends in Chesapeake Bay Tributaries, 1992-2012 // JAWRA Journal of the American Water Resources Association. - 2019. - Vol. 55, no. 5. - P. 1149-1168. - DOI:https://doi.org/10.1111/1752-1688.12756.

24. Chanat J. G., Yang G. Exploring Drivers of Regional Water-Quality Change Using Differential Spatially Referenced Regression-A Pilot Study in the Chesapeake Bay Watershed // Water Resources Research. - 2018. - Vol. 54, no. 10. - P. 8120-8145. - DOI:https://doi.org/10.1029/2017wr022403.

25. EGRET. Exploration and Graphics for RivEr Trends. - URL: http://usgs-r.github.io/EGRET/ (visited on 10/10/2022).

26. Fanelli R. M., Blomquist J. D., Hirsch R. M. Point sources and agricultural practices control spatial-temporal patterns of orthophosphate in tributaries to Chesapeake Bay // Science of The Total Environment. - 2019. - Vol. 652. - P. 422-433. - DOI:https://doi.org/10.1016/j.scitotenv.2018.10.062.

27. Giosan L., Syvitski J., Constantinescu S., et al. Climate change: Protect the world’s deltas // Nature. - 2014. - Vol. 516, no. 7529. - P. 31-33. - DOI:https://doi.org/10.1038/516031a.

28. Hirsch R. M. Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna River basin to the Chesapeake Bay during Tropical Storm Lee, September 2011, as an indicator of the effects of reservoir sedimentation on water quality. - U.S. Department of the Interior, U.S. Geological Survey, 2012. - P. 17.

29. Hirsch R. M., Moyer D. L., Archfield S. A. Weighted Regressions on Time, Discharge, and Season (WRTDS), with an Application to Chesapeake Bay River Inputs // JAWRA Journal of the American Water Resources Association. - 2010. - Vol. 46, no. 5. - P. 857-880. - DOI:https://doi.org/10.1111/j.1752-1688.2010.00482.x.

30. Lee C. J., Hirsch R. M., Crawford C. G. An evaluation of methods for computing annual water-quality loads. - US Geological Survey, 2019. - P. 58. - DOI:https://doi.org/10.3133/sir20195084.

31. Meter K. J. V., Basu N. B., Cappellen P. V. Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins // Global Biogeochemical Cycles. - 2017. - Vol. 31, no. 1. - P. 2-23. - DOI:https://doi.org/10.1002/2016gb005498.

32. Rankinen K., Keinänen H., Bernal J. E. C. Influence of climate and land use changes on nutrient fluxes from Finnish rivers to the Baltic Sea // Agriculture, Ecosystems & Environment. - 2016. - Vol. 216. - P. 100-115. - DOI:https://doi.org/10.1016/j.agee.2015.09.010.

33. Stackpoole S. M., Stets E. G., Clow D. W., et al. Spatial and temporal patterns of dissolved organic matter quantity and quality in the Mississippi River Basin, 1997-2013 // Hydrological Processes. - 2016. - Vol. 31, no. 4. - P. 902-915. - DOI:https://doi.org/10.1002/hyp.11072.

34. Strickling H. L., Obenour D. R. Leveraging Spatial and Temporal Variability to Probabilistically Characterize Nutrient Sources and Export Rates in a Developing Watershed // Water Resources Research. - 2018. - Vol. 54, no. 7. - P. 5143-5162. - DOI:https://doi.org/10.1029/2017wr022220.

35. Zhang Q., Blomquist J. D. Watershed export of fine sediment, organic carbon, and chlorophyll-a to Chesapeake Bay: Spatial and temporal patterns in 1984-2016 // Science of The Total Environment. - 2018. - Vol. 619/620. - P. 1066-1078. - DOI:https://doi.org/10.1016/j.scitotenv.2017.10.279.

36. Zhang Q., Hirsch R. M. River Water-Quality Concentration and Flux Estimation Can be Improved by Accounting for Serial Correlation Through an Autoregressive Model // Water Resources Research. - 2019. - Vol. 55, no. 11. - P. 9705-9723. - DOI:https://doi.org/10.1029/2019wr025338.

37. Zhang Q., Hirsch R. M., Ball W. P. Long-Term Changes in Sediment and Nutrient Delivery from Conowingo Dam to Chesapeake Bay: Effects of Reservoir Sedimentation // Environmental Science & Technology. - 2016. - Vol. 50, no. 4. - P. 1877-1886. - DOI:https://doi.org/10.1021/acs.est.5b04073.

38. Zolkos S., Zhulidov A. V., Gurtovaya T. Y., et al. Multidecadal declines in particulate mercury and sediment export from Russian rivers in the pan-Arctic basin // Proceedings of the National Academy of Sciences. - 2022. - Vol. 119, no. 14. - DOI:https://doi.org/10.1073/pnas.2119857119.

Login or Create
* Forgot password?