Joint Interpretation Results of Gravitational and Thermal Fields for the Ural Region
Abstract and keywords
Abstract (English):
A method for solving conjugation problems for the Poisson equation is implemented, which makes it possible to interpret potential fields (gravitational and stationary thermal fields) based on unified grid algorithms. A numerical algorithm has been developed for recalculating the mantle component of the heat flow from the level of the earth’s surface to the “crust–mantle” boundary through a layered medium inhomogeneous in thermal conductivity. Paleoclimate corrections were introduced into the measured values of the temperature gradient and heat flux for the northern territories. In the axial part of the Ural geosyncline, it was possible to exclude the negative depression of the mantle component of the heat flow, obtained from the results of geothermal modeling; taking into account the Pleistocene-Holocene warming of the preceding interglacial paleoclimate cycle leads to positive values of the heat flow recalculated to the “crust–mantle” boundary. It is shown that the use of heat flow data can significantly increase the geological information content of gravity modeling.

Keywords:
Stationary heat flow, piecewise homogeneous layered medium, thermal conjugation conditions, Green’s integral formula, separation of the flow into components from sources of the earth’s crust and upper mantle
Text
Publication text (PDF): Read Download
References

1. Bulashevich Y. P. Informativeness of geothermy in the study of the earth’s crust of the Ural eugeosyncline // Proceedings of the Academy of Sciences of the USSR. Series Physics of the Earth. - 1983. - No. 8. - P. 76-83.

2. Bulashevich Y. P., Shchapov V. A. Geothermal features of the Ural geosyncline // Doklady Akademii nauk SSSR. - 1978. - Vol. 243, no. 3. - P. 715-718

3. Bulashevich Y. P., Shchapov V. A. Geothermal characteristics of the Urals // Use of geothermy in regional and exploration research. - Sverdlovsk : Academy of Sciences of the USSR. Ural Scientific Center, 1983. - P. 3-17.

4. Bulashevich Y. P., Shchapov V. A. Geothermal features of the Ural geosyncline // Doklady Akademii nauk SSSR. - 1986. - Vol. 290, no. 1. - P. 173-176.

5. Vladimirov V. S., Zharinov V. V. Equations of Mathematical Physics. - Moscow : Fizmatlit, 2000. - P. 400.

6. Golovanova I. V. The thermal field of the Southern Urals. - Moscow : Science, 2005. - P. 190.

7. Golovanova I. V., Puchkov V. N., Sal’manova R. Y., et al. A new version of the heat flow map of the Urals with paleoclimatic corrections // Doklady Earth Sciences. - 2008. - Vol. 422, no. 1. - P. 1153-1156. - DOI:https://doi.org/10.1134/s1028334x08070350

8. Golovanova I. V., Salmanova R. Y., Tagirova C. D. Method for deep temperature estimation with regard to the paleoclimate influence on heat flow // Russian geology and geophysics. - 2014. - Vol. 55, no. 9. - P. 1130-1137. - DOI:https://doi.org/10.1016/j.rgg.2014.08.008.

9. Gordienko V. V. Radiogenic heat generation in the Earth’s crust and heat flow from the mantle of ancient platforms // Geophysical journal. - 1980. - Vol. 2, no. 3. - P. 29-34.

10. Duchkov A. D., Sokolova L. S. Thermal structure of the lithosphere of the Siberian platform // Russian geology and geophysics. - 1997. - Vol. 38, no. 2. - P. 494-503.

11. Duchkov A. D., Sokolova L. S., Ayunov D. E. Electronic geothermal atlas of Siberia and the Far East // Interexpo GEO-SIBERIA. - 1997. - Vol. 2, no. 3. - P. 153-157.

12. Kutas R. I. Heat flow and geothermal models of the earth’s crust of the Ukrainian Carpathians // Geophysical journal. - 2014. - Vol. 36, no. 6. - P. 3-27

13. Kutas R. I., Gordienko V. V. Heat field of Ukraine. - Kyiv : Naukova Dumka, 1971.

14. Salnikov V. E. Geothermal regime of the Southern Urals. - Moscow : Science, 1984. - P. 88.

15. Tectonic map of Russia, adjacent territories and water areas / ed. by E. E. Milanovsky. - Moscow : MSU, 2006.

16. Tikhonov A. N., Samarsky A. A. Equations of Mathematical Physics. - Moscow : Science, 1999. - P. 979.

17. Khachai Y. V., Druzhinin V. S. Possibilities of applying geothermal to restore the dynamics of the transitional zone of the Ural mantle // Deep structure and development of the Urals. - Yekaterinburg : Science, 1996. - P. 298-306.

18. Shchapov V. A. The thermal field of the Urals // Ural Geophysical Bulletin. - 2000. - Vol. 1. - P. 126-130.

19. Shchapov V. A., Burdin Y. B., Bolshchikov V. A., et al. Radiogenic heat generation of Ural eugeosyncline rocks // Ural Geophysical Bulletin. - 2004. - No. 6. - P. 116-121.

20. Artemieva I. M. The continental lithosphere: Reconciling thermal, seismic, and petrologic data // Lithos. - 2009. - Vol. 109, no. 1/2. - P. 23-46. - DOI:https://doi.org/10.1016/j.lithos.2008.09.015.

21. Artemieva I. M., Mooney W. D. Thermal thickness and evolution of Precambrian lithosphere: A global study // Journal of Geophysical Research: Solid Earth. - 2001. - Vol. 106, B8. - P. 16387-16414. - DOI:https://doi.org/10.1029/2000jb900439.

22. Cermak V., Bodri L., Rybach L., et al. Relationship between seismic velocity and heat production: comparison of two sets of data and test of validity // Earth and Planetary Science Letters. - 1990. - Vol. 99, no. 1/2. - P. 48-57. - DOI:https://doi.org/10.1016/0012-821x(90)90069-a.

23. Crough S. T., Thompson G. A. Thermal model of continental lithosphere // Journal of Geophysical Research. - 1976. - Vol. 81, no. 26. - P. 4857-4862. - DOI:https://doi.org/10.1029/jb081i026p04857.

24. Gordienko V. V., Pavlenkova N. I. Combined geothermal-geophysical models of the earth’s crust and upper mantle for the European continent // Journal of Geodynamics. - 1985. - Vol. 4, no. 1-4. - P. 75-90. - DOI:https://doi.org/10.1016/0264-3707(85)90053-5.

25. Khutorskoi M. D., Polyak B. G. Role of radiogenic heat generation in surface heat flow formation // Geotectonics. - 2016. - Vol. 50, no. 2. - P. 179-195. - DOI:https://doi.org/10.1134/s0016852116020047.

26. Kukkonen I. T., Golovanova I. V., Khachay Y. V., et al. Low geothermal heat flow of the Urals fold belt - implication of low heat production, fluid circulation or palaeoclimate? // Tectonophysics. - 1997. - Vol. 276, no. 1-4. - P. 63-85. - DOI:https://doi.org/10.1016/s0040-1951(97)00048-6.

27. Ladovskii I. V., Martyshko P. S., Tsidaev A. G., et al. A Method for Quantitative Interpretation of Stationary Thermal Fields for Layered Media // Geosciences. - 2020. - Vol. 10, no. 5. - P. 199. - DOI:https://doi.org/10.3390/geosciences10050199.

28. Martyshko P., Ladovskii I., Byzov D. Parallel Algorithms for Solving Inverse Gravimetry Problems: Application for Earth’s Crust Density Models Creation // Mathematics. - 2021. - Vol. 9, no. 22. - P. 2966. - DOI:https://doi.org/10.3390/math9222966.

29. Martyshko P. S., Ladovskii I. V., Byzov D. D., et al. On solutions of forward and inverse problem for potential geophysical fields: Gravity inversion for Urals region // Application of Mathematics in Technical and Natural Sciences: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19. - AIP Publishing, 2019. - DOI:https://doi.org/10.1063/1.5130870.

30. Rybach L., Buntebarth G. Relationships between the petrophysical properties density, seismic velocity, heat generation, and mineralogical constitution // Earth and Planetary Science Letters. - 1982. - Vol. 57, no. 2. - P. 367-376. - DOI:https://doi.org/10.1016/0012-821x(82)90157-1.

Login or Create
* Forgot password?