Water Content and Pb Concentrations in the Bottom Sediments Of The Gdansk Deep (South-Eastern Baltic Sea) According to the Portable X-Ray Fluorescence Analyzer Olympus Vanta C
Abstract and keywords
Abstract (English):
This work describes a method for determining the water content in sediments from the Gulf of Gdansk of the Baltic Sea, which is based on the analysis of spectral data obtained using the portable X-ray fluorescence analyzer (XRF) Olympus Vanta C. The water content calculated from the XRF spectral data showed a high correlation (𝑟 = 0.95) with those measured using the conventional method of drying to constant mass. This allows the conversion between the results obtained using the portable XRF analyzer on bulk sediments to those obtained on dried sediments. Comparison of the converted data from the portable analyzer with the results of element composition analysis performed on dried homogenized samples using the wavelength-dispersive XRF analyzer Spectroscan-Max-G and atomic absorption spectrophotometer Varian AA240FS showed high correlation coefficients for Mn, Ca, K, Zn, Pb, As and low coefficients for Fe, Co, Ti, Ni, Cu and Sr. The results of the analysis using the portable XRF spectrometer, converted to dry weight of the sediment, were used to study the distribution of Pb concentrations in the sediments of the Gulf of Gdansk. An increase in Pb content up to 60 ppm was observed in the upper part of sediment cover. This increase is likely associated with the intensification of anthropogenic activities in AD 1 and AD 1200. Maximum lead concentrations up to 124 ppm were found in near-surface sediments, likely related to the period of industrialization in the 1970s.

Keywords:
sediment cores, Spectroscan-Maks-G, coherent and incoherent scattering, anthropogenic source of lead input
Text
Publication text (PDF): Read Download
References

1. Belzunce Segarra M. J., Szefer P., Wilson M. J., et al. Chemical forms and distribution of heavy metals in core sediments from the Gdańsk Basin, Baltic Sea // Polish Journal of Environmental Studies. — 2007. — Vol. 16, no. 4. — P. 505–515.

2. Berntsson A., Rosqvist G. C., Velle G. Late-Holocene temperature and precipitation changes in Vindelfjällen, mid-western Swedish Lapland, inferred from chironomid and geochemical data // The Holocene. — 2013. — Vol. 24, no. 1. — P. 78–92. — DOI:https://doi.org/10.1177/0959683613512167.

3. Blazhchishin A. I. Paleogeography and evolution of Late Quaternary sedimentation in the Baltic Sea. — Kaliningrad : Yantarny skaz, 1998. — P. 160.

4. Borges C. S., Weindorf D. C., Nascimento D. C., et al. Comparison of portable X-ray fluorescence spectrometry and laboratory-based methods to assess the soil elemental composition: Applications for wetland soils // Environmental Technology & Innovation. — 2020. — Vol. 19. — P. 100826. — DOI:https://doi.org/10.1016/j.eti.2020.100826.

5. Boyle J. F., Chiverrell R. C., Schillereff D. Approaches to Water Content Correction and Calibration for 𝜇XRF Core Scanning: Comparing X-ray Scattering with Simple Regression of Elemental Concentrations // Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences / ed. by I. W. Croudace, R. G. Rothwell. — Dordrecht : Springer Netherlands, 2015. — P. 373–390. — DOI:https://doi.org/10.1007/978-94-017-9849-5_14.

6. Croudace I. W., Rothwell R. G., eds. Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences. — Springer Netherlands, 2015. — DOI:https://doi.org/10.1007/978-94-017-9849-5.

7. Cuven S., Francus P., Lamoureux S. Mid to Late Holocene hydroclimatic and geochemical records from the varved sediments of East Lake, Cape Bounty, Canadian High Arctic // Quaternary Science Reviews. — 2011. — Vol. 30, no. 19/20. — P. 2651–2665. — DOI:https://doi.org/10.1016/j.quascirev.2011.05.019.

8. Emelyanov E. M., ed. Geology of the Gdansk Basin. Baltic Sea. — Kaliningrad : Yantarny skaz, 2002. — P. 496.

9. Emelyanov E. M., Kravtsov V. A., Sivkov V. V., et al. Toxic substances in bottom sediments // Oil and environment of the Kaliningrad region. Vol. II: Sea / ed. by V. V. Sivkov, Y. S. Kadzhoyan, O. E. Pichuzhkina, et al. — Kaliningrad : Terra Baltica, 2012. — P. 304–314.

10. Glasby G. P., Szefer P. Marine pollution in Gdansk Bay, Puck Bay and the Vistula Lagoon, Poland: An overview // The Science of The Total Environment. — 1998. — Vol. 212, no. 1. — P. 49–57. — DOI:https://doi.org/10.1016/S0048-9697(97)00333-1.

11. Glasby G. P., Szefer P., Geldon J., et al. Heavy-metal pollution of sediments from Szczecin Lagoon and the Gdansk Basin, Poland // Science of The Total Environment. — 2004. — Vol. 330, no. 1–3. — P. 249–269. — DOI:https://doi.org/10.1016/j.scitotenv.2004.04.004.

12. Glazkova T., Hernández-Molina F. J., Dorokhova E., et al. Sedimentary processes in the Discovery Gap (Central-NE Atlantic): An example of a deep marine gateway // Deep Sea Research Part I: Oceanographic Research Papers. — 2022. — Vol. 180. — P. 103681. — DOI:https://doi.org/10.1016/j.dsr.2021.103681.

13. Grigelis A., Gelumbauskait˙e L. Ž., Cato I., et al. Bottom topography and sediment maps of the Central Baltic Sea : scale 1:500 000 : a short description. — Lithuanian Geological Institute, Geological Survey of Sweden et al., 1999. — P. 24. — DOI:https://doi.org/10.13140/2.1.4477.7288.

14. Hahn A., Bowen M. G., Clift P. D., et al. Testing the analytical performance of handheld XRF using marine sediments of IODP Expedition 355 // Geological Magazine. — 2019. — Vol. 157, no. 6. — P. 956–960. — DOI:https://doi.org/10.1017/S0016756819000189.

15. HELCOM. Batymatry of the Baltic Sea (BALANCE). — 2009. — (visited on 2023/09/15). https://archive.iwlearn.net/helcom.fi/stc/files/Data/BALANCEdata/metadata/Bathymetry.htm.

16. HELCOM. Ecosystem Health of the Baltic Sea 2003-2007: HELCOM Initial Holistic Assessment. — Baltic Sea Environment Proceedings No. 122, 2010.

17. Ivanova E., Borisov D., Dmitrenko O., et al. Hiatuses in the late Pliocene-Pleistocene stratigraphy of the Ioffe calcareous contourite drift, western South Atlantic // Marine and Petroleum Geology. — 2020. — Vol. 111. — P. 624–637. — DOI:https://doi.org/10.1016/j.marpetgeo.2019.08.031.

18. Löwemark L., Chen H.-F., Yang T.-N., et al. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes // Journal of Asian Earth Sciences. — 2011. — Vol. 40, no. 6. — P. 1250–1256. — DOI:https://doi.org/10.1016/j.jseaes.2010.06.002.

19. MacLachlan S. E., Hunt J. E., Croudace I. W. An Empirical Assessment of Variable Water Content and Grain-Size on X-Ray Fluorescence Core-Scanning Measurements of Deep Sea Sediments // Developments in Paleoenvironmental Research. — Springer Netherlands, 2015. — P. 173–185. — DOI:https://doi.org/10.1007/978-94-017-9849-5_6.

20. Ponomarenko E. Holocene palaeoenvironment of the central Baltic Sea based on sediment records from the Gotland Basin // Regional Studies in Marine Science. — 2023. — Vol. 63. — P. 102992. — DOI:https://doi.org/10.1016/j.rsma.2023.102992.

21. Revenko A. G. X-ray fluorescence analysis of natural materials. — Novosibirsk : Nauka, 1994. — P. 264.

22. Shahabi-Ghahfarokhi S., Josefsson S., Apler A., et al. Baltic Sea sediments record anthropogenic loads of Cd, Pb and Zn // Environmental Science and Pollution Research. — 2020. — Vol. 28, no. 5. — P. 6162–6175. — DOI:https://doi.org/10.1007/s11356-020-10735-x.

23. Szefer P., Skwarzec B. Distribution and possible sources of some elements in the sediment cores of the Southern Baltic // Marine Chemistry. — 1988. — Vol. 23, no. 1/2. — P. 109–129. — DOI:https://doi.org/10.1016/0304-4203(88)90026-6.

24. Uscinowicz S., ed. Geochemistry of Baltic Sea surface sediments. — Polish Geological Institute-National Research Institute, 2011.

25. Virtasalo J. J., Ryabchuk D., Kotilainen A. T., et al. Middle Holocene to present sedimentary environment in the easternmost Gulf of Finland (Baltic Sea) and the birth of the Neva River // Marine Geology. — 2014. — Vol. 350. — P. 84–96. — DOI:https://doi.org/10.1016/j.margeo.2014.02.003.

26. Weltje G. J., Bloemsma M. R., Tjallingii R., et al. Prediction of Geochemical Composition from XRF Core Scanner Data: A New Multivariate Approach Including Automatic Selection of Calibration Samples and Quantification of Uncertainties // Developments in Paleoenvironmental Research. — Springer Netherlands, 2015. — P. 507–534. — DOI:https://doi.org/10.1007/978-94-017-9849-5_21.

27. Weltje G. J., Tjallingii R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application // Earth and Planetary Science Letters. — 2008. — Vol. 274, no. 3/4. — P. 423–438. — DOI:https://doi.org/10.1016/j.epsl.2008.07.054.

28. Yakovlev D. A., Radomskaya T. A., Vorontsov A. A., et al. General geochemistry: textbook (2nd edition). — ISU, 2019.

29. Zillén L., Lenz C., Jilbert T. Stable lead (Pb) isotopes and concentrations - A useful independent dating tool for Baltic Sea sediments // Quaternary Geochronology. — 2012. — Vol. 8. — P. 41–45. — DOI:https://doi.org/10.1016/j.quageo.2011.11.001.

Login or Create
* Forgot password?