from 01.01.2016 until now
Sevastopol, Sevastopol, Russian Federation
Sevastopol, Sevastopol, Russian Federation
Sevastopol, Sevastopol, Russian Federation
Moscow, Moscow, Russian Federation
UDK 504.064.37 Дистанционные исследования, зондирование
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
The mechanisms of manifestation of internal waves in satellite data of the optical range are considered for the mouth area of the Danube. Three main mechanisms for the manifestation of internal waves are identified – the previously described dynamic (due to a change in the roughness of the sea surface in convergent zones created by a moving internal wave), slick – when surfactants accumulate in convergence zones, and a new one – change in the brightness of the sea surface defined by scattering layer thickness modulation by internal waves. Data from the OLI Landsat-8 scanner for 2015–2019 were used for the analysis. It is shown that in different situations, internal waves can manifest themselves either due to various mechanisms or only due to one of them. Summary maps of manifestations of internal waves in the study area were constructed. Additionally, the situations with quasi-synchronous data of MSI Sentinel-2 and C-SAR Sentinel-1, which displayed the same packets of internal waves, are considered. The selection of such pairs made it possible to estimate the phase velocities of internal waves, which ranged from 0.05 m/s (0.19 km/h) to0.95 m/s (3.43 km/h) in various hydrometeorological situations. Examples of internal wavefront transformation on submesoscale eddies are presented.
Black Sea, Danube, Danube mouth, spectral characteristics, internal waves, opticalimages, satellite data, internal wave velocities, OLI Landsat-8
1. Alpers W. Theory of radar imaging of internal waves // Nature. — 1985. — Vol. 314, no. 6008. — P. 245–247. — DOI:https://doi.org/10.1038/314245a0.
2. Bondur V. G., Sabinin K. D., Grebenyuk Y. V. Generation of inertia-gravity waves on the island shelf // Izvestiya, Atmospheric and Oceanic Physics. — 2015. — Vol. 51, no. 2. — P. 208–213. — DOI:https://doi.org/10.1134/S0001433815020036.
3. Bondur V. G., Serebryany A. N., Zamshin V. V.,et al.Intensive Internal Waves with Anomalous Heights in the BlackSea Shelf Area // Izvestiya, Atmospheric and Oceanic Physics. — 2019. — Vol. 55, no. 1. — P. 99–109. — DOI:https://doi.org/10.1134/S000143381901002X.
4. Bulatov V. V., Ponomarev A. N. About the Possibility of Improving the Image Quality of Laser Location in the Process of Remote Sensing of the Water Surface // Processes in GeoMedia-Volume VI. — Springer International Publishing,2023. — P. 277–282. — DOI:https://doi.org/10.1007/978-3-031-16575-7_26.
5. Copernicus Open Access Hub. — URL: https://scihub.copernicus.eu/dhus/%5C#/home (visited on 2022).
6. Eckart C. Internal Waves in the Ocean//The Physics of Fluids. — 1961. — Vol. 4, no. 7. — P. 791–799. — DOI:https://doi.org/10.1063/1.1706408.EOSDIS.
7. Worldview. — URL: https://worldview.earthdata.nasa.gov/ (visited on 2022).
8. Ivanov V. A., Serebryany A. N. Short-period internal waves in the coastal zone of a tidal sea // Izvestiya USSR Academy of Sciences. Physics of the atmosphere and ocean. — 1985. — Vol. 21, no. 6. — P. 648–656.
9. Ivanov V. A., Shul’ga T. Y., Bagaev A. V.,et al. Internal Waves on the Black Sea Shelf near the Heracles Peninsula: Modeling and Observation // Physical Oceanography. — 2019. — Vol. 26, no. 4. — DOI:https://doi.org/10.22449/1573-160X-2019-4-288-304.
10. Khimchenko E., Ostrovskii A., Klyuvitkin A., et al. Seasonal Variability of Near-Inertial Internal Waves in the Deep Central Part of the Black Sea // Journal of Marine Science and Engineering. — 2022. — Vol. 10, no. 5. — P. 557. —DOI:https://doi.org/10.3390/jmse10050557.
11. Lavrova O., Mityagina M. Satellite Survey of Internal Waves in the Black and Caspian Seas // Remote Sensing. — 2017. —Vol. 9, no. 9. — P. 892. — DOI:https://doi.org/10.3390/rs9090892.
12. Lavrova O. Y., Mityagina M. I., Sabinin K. D. Possible mechanisms for generating internal waves in the northeastern part of the Black Sea // Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2008. — Vol. 2,no. 5. — P. 128–136.
13. Lavrova O. Y., Mityagina M. I., Serebryany A. N.,et al.Internal waves in the Black Sea: satellite observations and in-situmeasurements // Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2014. — SPIE,2014. — DOI:https://doi.org/10.1117/12.2067047.
14. Mityagina M. I., Lavrova O. Y. Radar survey of internal waves surface manifestations in non-tidal seas // Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2010. — Vol. 7, no. 1. — P. 260–272.
15. Nash J. D., Moum J. N. River plumes as a source of large-amplitude internal waves in the coastal ocean // Nature. —2005. — Vol. 437, no. 7057. — P. 400–403. — DOI:https://doi.org/10.1038/nature03936.
16. Navionics. — URL: https://www.navionics.com/ (visited on 2022).
17. Robinson I. S. Measuring the oceans from space: The Principles and Methods of Satellite Oceanography. — Springer,2004. — 716 p.
18. Sabinin K. D., Serebryanyi A. N., Nazarov A. A. Intensive internal waves in the World Ocean // Oceanology. — 2004. —Vol. 44, no. 6. — P. 753–758.
19. Sentinelhub Playground. — URL: https://apps.sentinel-hub.com/sentinel-playground/ (visited on 2022).
20. Serebryany A. N., Ivanov V. A. Study of Internal Waves in the Black Sea from Oceanography Platform of Marine Hydrophysical Institute // Fundamental and applied hydrophysics. — 2013. — Vol. 6, no. 3. — P. 34–45.
21. USGS. EarthExplorer. — URL: https://earthexplorer.usgs.gov/ (visited on 2022).