Specific Features of Internal Waves Manifestation in the Near Mouth Zone of the Danube by High-Resolution Satellite Data
Abstract and keywords
Abstract (English):
The mechanisms of internal waves manifestation in satellite data of the optical range are considered for the mouth area of the Danube. Three main mechanisms for the manifestation of internal waves are identified - the previously described dynamic (due to a change in the roughness of the sea surface in convergent zones created by a moving internal wave), slick - when surfactants accumulate in convergence zones, and a new one - due to a change in the brightness of the sea surface during modulation internal wave by the scattering layer thickness. Data from the OLI Landsat-8 scanner for 2015-2019 were used for the analysis. It is shown that in different situations, internal waves can manifest themselves either due to various mechanisms, or only due to one of them. Summary maps of manifestations of internal waves in the study area were constructed. Additionally, situations with quasi-synchronous data of MSI Sentinel-2 and C-SAR Sentinel-1, which displayed internal wave packets, are considered. The selection of such pairs made it possible to estimate the phase velocities of internal waves, which ranged from 0.05 m/s (0.19 km/h) to 0.95 m/s (3.43 km/h) in various hydrometeorological situations. Examples of internal wave front transformation on submesoscale eddies are presented

Keywords:
Black Sea, Danube, Danube mouth, spectral characteristics, internal waves, optical images, satellite data, internal wave velocities, OLI Landsat-8.
Text
Publication text (PDF): Read Download
References

1. Ivanov, V.A., Serebryanyy, A.N. 1985. Korotkoperiodnye vnutrennie volny v pribrezhnoy zone besprilivnogo morya. Izvestiya Akademii nauk SSSR. Fizika atmosfery i okeana, T. 21, № 6, S. 648-656.

2. Lavrova, O.Yu., Mityagina, M.I., Sabinin, K.D., 2008. Vozmozhnye mehanizmy generacii vnutrennih voln v severo-vostochnoy chasti Chernogo morya. Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa, T. 2, № 5, S. 128.

3. Mityagina, M.I., Lavrova, O.Yu. 2010. Sputnikovye nablyudeniya poverhnostnyh proyavleniy vnutrennih voln v moryah bez prilivov. Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa, T. 7, № 1, S. 260-272.

4. Serebryanyy, A. N., Ivanov, V. A. 2013. Issledovaniya vnutrennih voln v Chernom more s okeanograficheskoy platformy MGI. Fundamental'naya i prikladnaya gidrofizika, T. 6, № 3, S. 34-45.

5. Alpers, W. 1985. Theory of radar imaging of internal waves. Nature, Vol. 314, № 6008, pp. 245-247.

6. Bondur, V.G., Sabinin, K.D., Grebenyuk, Y.V. 2015. Generation of inertia-gravity waves on the island shelf. Izvestiya, Atmospheric and Oceanic Physics, T. 51, № 2, S. 208-213. DOI:https://doi.org/10.1134/S0001433815020036

7. Bondur, V.G., Serebryany, A.N., Zamshin, V.V., Tarasov, L.L., Khimchenko, E. 2019. Intensive internal waves with anomalous heights in the Black Sea shelf area. Izvestiya, Atmospheric and Oceanic Physics, Vol. 55, pp. 99-109. DOI:https://doi.org/10.1134/S000143381901002X

8. Bulatov, V.V., Ponomarev, A.N. 2023, About the possibility of improving the image quality of laser location in the process of remote sensing of the water surface. Processes in GeoMedia - Volume VI, pp. 277-283. Springer Geology: Moscow. DOI:https://doi.org/10.1007/978-3-031-16575-7_26

9. Eckart, C. 1961. Internal waves in the ocean. The physics of fluids, Vol. 4, № 7, pp. 791-799.

10. Ivanov, V.A., Shul'Ga, T.Y., Bagaev, A.V., Medvedeva, A.V., Plastun, T.V., Verzhevskaia, L.V., Svishcheva, I.A. 2019. Internal waves on the black sea shelf near the Heracles Peninsula: modeling and observation. Physical Oceanography, Vol. 26, № 4, pp. 288-304. DOI:https://doi.org/10.22449/1573-160X-2019-4-288-304

11. Khimchenko, E., Ostrovskii, A., Klyuvitkin, A., Piterbarg, L. 2022. Seasonal Variability of Near-Inertial Internal Waves in the Deep Central Part of the Black Sea. Journal of Marine Science and Engineering, Vol. 10, № 5, P. 557. DOI:https://doi.org/10.3390/jmse10050557

12. Lavrova, O., Mityagina, M. 2017. Satellite survey of internal waves in the Black and Caspian Seas. Remote Sensing, Vol. 9, № 9, P. 892. DOI: 0.3390/rs9090892

13. Lavrova, O.Y., Mityagina, M.I., Serebryany, A.N., Sabinin, K.D., Kalashnikova, N.A., Krayushkin, E.V., Khymchenko, I. 2014. Internal waves in the Black Sea: satellite observations and in-situ measurements. Proceedings Volume 9240, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2014, pp. 248-260. SPIE Remote Sensing: Amsterdam.

14. Mityagina, M.I., Lavrova, O.Y., Karimova, S.S. 2010. Multi-sensor survey of seasonal variability in coastal eddy and internal wave signatures in the north-eastern Black Sea. International Journal of Remote Sensing, Vol. 31, № 17-18, pp. 4779-4790. DOI:https://doi.org/10.1080/01431161.2010.485151

15. Nash, J.D., Moum, J.N. 2005. River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature, Vol. 437, № 7057, pp. 400-403.

16. Robinson, I.S. 2004. Measuring the Oceans from Space: The Principles and Methods of Satellite Oceanography. Praxis Publishing: Chichester, 669 pp.

17. Sabinin, K.D., Serebryanyi, A.N., Nazarov, A.A. 2004. Intensive internal waves in the World Ocean. Oceanology, Vol. 44, № 6, pp. 753-758.

18. Copernicus Open Access Hub - https://scihub.copernicus.eu/dhus/#/home (data obrascheniya: 2022-2023 gg.)

19. EOSDIS Worldview - https://worldview.earthdata.nasa.gov/ (data obrascheniya: 2022-2023 gg.)

20. Navionics - https://www.navionics.com/ (data obrascheniya: 2022-2023 gg.)

21. Sentinelhub Playground - https://apps.sentinel-hub.com/sentinel-playground/ (data obrascheniya: 2022-2023 gg.)

22. USGS EarthExplorer - https://earthexplorer.usgs.gov/ (data obrascheniya: 2022-2023 gg.)

Login or Create
* Forgot password?