St. Petersburg, Russian Federation
Russian Federation
St. Petersburg, Russian Federation
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.03.02 География
OKSO 05.06.01 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
The interannual variability of the ocean surface temperature in the area of the Peruvian upwelling for the period 1980–2022 is considered according to the satellite archive GODAS (Global Ocean Data Assimilation System) using the methods of multivariate statistical analysis. Local foci of significant trends, for average annual Sea Surface Temperature (SST) values, were identified near the Peruvian offshore. Four regions (clusters) were obtained, which describe the variability of SST in front off Peru, which could be used to pretend to develop a prognostic oceanographic model. Furthermore, coincidences of temperature fluctuations were found between the first cluster and the region N3+4
Peruvian upwelling, ocean surface temperature, interannual variability, multivariate statistical analysis
1. Abrahams, A., R. W. Schlegel, and A. J. Smit (2021), Variation and Change of Upwelling Dynamics Detected in the World’s Eastern Boundary Upwelling Systems, Frontiers in Marine Science, 8, https://doi.org/10.3389/fmars.2021.626411.
2. Aguirre, E. H. (2015), A Numerical Study of Oceanic Circulation in San Juan, Peru. Calibration of Princeton Ocean Model During 1991-2000, The Open Oceanography Journal, 8(1), 33–38, https://doi.org/10.2174/1874252101408010033.
3. Agüero, M., and M. Claveri (2007), Capacidad de pesca y manejo pesquero en América Latina y el Caribe: Una síntesis de casos, in Capacidad De Pesca Y Manejo Pesquero En America Y El Caribe (Documento Tecnicos De Pesca), vol. 461, pp. 61–71, Food & Agriculture Org.
4. Aiken, C. M., S. A. Navarrete, and J. L. Pelegrí (2011), Potential changes in larval dispersal and alongshore connectivity on the central Chilean coast due to an altered wind climate, Journal of Geophysical Research, 116(G4), https://doi.org/10.1029/2011JG001731.
5. Bakun, A. (1996), Patterns in the Ocean: Ocean Processes and Marine Population Dynamics, 346 pp., California Sea Grant, San Diego (CA).
6. Bakun, A., and S. J. Weeks (2008), The marine ecosystem off Peru: What are the secrets of its fishery productivity and what might its future hold?, Progress in Oceanography, 79(2–4), 290–299, https://doi.org/10.1016/j.pocean.2008.10.027.
7. Bakun, A., D. B. Field, A. Redondo-Rodriguez, and S. J. Weeks (2010), Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems, Global Change Biology, 16(4), 1213–1228, https://doi.org/10.1111/j.1365-2486.2009.02094.x.
8. Bakun, A., B. A. Black, S. J. Bograd, M. García-Reyes, A. J. Miller, R. R. Rykaczewski, and W. J. Sydeman (2015), Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems, Current Climate Change Reports, 1(2), 85–93, https://doi.org/10.1007/s40641-015-0008-4.
9. Bertrand, A., M. Segura, M. Gutiérrez, and L. Vásquez (2004), From small-scale habitat loopholes to decadal cycles: a habitat-based hypothesis explaining fluctuation in pelagic fish populations off Peru, Fish and Fisheries, 5(4), 296–316, https://doi.org/10.1111/j.1467-2679.2004.00165.x.
10. Bohle-Carbonell, M. (1989), On the variability of the Peruvian upwelling system, in The Peruvian upwelling ecosystem: dynamics and interactions, pp. 14–32, ICLARM Conference Proceedings Instituto del Mar del Perá (IMARPE).
11. Brink, K. H., D. Halpern, A. Huyer, and R. L. Smith (1983), The physical environment of the Peruvian upwelling system, Progress in Oceanography, 12(3), 285–305, https://doi.org/10.1016/0079-6611(83)90011-3.
12. Castillo, R., L. Dalla Rosa, W. García Diaz, L. Madureira, M. Gutierrez, L. Vásquez, and R. Koppelmann (2018), Anchovy distribution off Peru in relation to abiotic parameters: A 32-year time series from 1985 to 2017, Fisheries Oceanography, 28(4), 389–401, https://doi.org/10.1111/fog.12419.
13. Castillo, R., R. Cornejo, L. La Cruz, D. Grados, G. Cuadros, A. Paz, and M. Pozada (2021), Abundancia de anchoveta (Engraulis ringens) y otras especies pelágicas estimadas por el método hidroacústico en el ecosistema marino peruano en el 2020, Informe Instituto del Mar de Perú.
14. Chang, P., G. Xu, J. Kurian, R. J. Small, G. Danabasoglu, S. Yeager, F. Castruccio, Q. Zhang, N. Rosenbloom, and P. Chapman (2023), Uncertain future of sustainable fisheries environment in eastern boundary upwelling zones under climate change, Communications Earth & Environment, 4(1), https://doi.org/10.1038/s43247-023-00681-0.
15. Chavez, F. P., A. Bertrand, R. Guevara-Carrasco, P. Soler, and J. Csirke (2008), The northern Humboldt Current System: Brief history, present status and a view towards the future, Progress in Oceanography, 79(2–4), 95–105, https://doi.org/10.1016/j.pocean.2008.10.012.
16. ECMWF (2021), Sea surface temperature: climate indicators, https://climate.copernicus.eu/climate-indicators/seasurface-temperature, (date of access: 03.02.2023).
17. Espinoza-Morriberón, D., V. Echevin, F. Colas, J. Tam, J. Ledesma, L. Vásquez, and M. Graco (2017), Impacts of El Niño events on the Peruvian upwelling system productivity, Journal of Geophysical Research: Oceans, 122(7), 5423–5444, https://doi.org/10.1002/2016JC012439
18. Falvey, M., and R. D. Garreaud (2009), Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979-2006), Journal of Geophysical Research: Atmospheres, 114(D4), https://doi.org/10.1029/2008JD010519.
19. FAO (2022), State of World Fisheries and Aquaculture 2022. Towards Blue Transformation, 266 pp., Food & Agriculture Organization of the United Nations, Rome, https://doi.org/10.4060/cc0461en.
20. Gutiérrez, D., I. Bouloubassi, A. Sifeddine, et al. (2011), Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century: RECENT TRENDS IN THE PERUVIAN UPWELLING, Geophysical Research Letters, 38(7), https://doi.org/10.1029/2010GL046324.
21. Gutiérrez, D., M. Akester, and L. Naranjo (2016), Productivity and Sustainable Management of the Humboldt Current Large Marine Ecosystem under climate change, Environmental Development, 17, 126–144, https://doi.org/10.1016/j.envdev.2015.11.004.
22. Heileman, S., R. Guevara, F. Chavez, A. Bertrand, and H. Soldi (2009), XVII-56 Humboldt current: LME # 13, in The UNEP Large marineEcosystem Report: A perspective on changing conditions in LMEs of the world’s Regional Seas, United Nations Environment Programme, Nairobi (Kenya).
23. Huaringa, E. (2020), The Peruvian upwelling system. A numerical study of the spatial and time variabilities, Revista De Investigación De Física, 23(3), 31–36.
24. Jebri, B., M. Khodri, G. Gastineau, V. Echevin, and S. Thiria (2017), Intensification of Chile-Peru upwelling under climate change: diagnosing the impact of natural and anthropogenic forcing from the IPSL-CM5 model, in AGU Fall Meeting Abstracts, American Geophysical Union.
25. Jebri, B., M. Khodri, V. Echevin, G. Gastineau, S. Thiria, J. Vialard, and N. Lebas (2020), Contributions of Internal Variability and External Forcing to the Recent Trends in the Southeastern Pacific and Peru-Chile Upwelling System, Journal of Climate, 33(24), 10,555–10,578, https://doi.org/10.1175/JCLI-D-19-0304.1.
26. Karstensen, J., and O. Ulloa (2009), Peru-Chile Current System, in Encyclopedia of Ocean Sciences, pp. 385–392, Elsevier, https://doi.org/10.1016/b978-012374473-9.00599-3.
27. Krasnoborodko, O. (2018), On recurrence of heavy and disastrous El Niño and its impact on fishery in the Peruvian subarea of the South-East Pacific, Proceedings of AtlantNIRO, 2(2), 66–83 (in Russian).
28. Lamont, T., M. García-Reyes, S. J. Bograd, C. D. van der Lingen, and W. J. Sydeman (2018), Upwelling indices for comparative ecosystem studies: Variability in the Benguela Upwelling System, Journal of Marine Systems, 188, 3–16, https://doi.org/10.1016/j.jmarsys.2017.05.007.
29. Malinin, V. (2002), Statistical Methods for the Analysis of Hydrometeorological Information, 408 pp., Russian State Hydrometeorological University (RSHU), St. Petersburg (in Russian).
30. Malinin, V., P. Chernyshkov, and S. Gordeeva (2002), Canarian upwelling: Large-scale variability and forecast of water temperature, 156 pp., Gidrometeoizdat (in Russian).
31. Malinin, V. N., and M. A. Smirnov (2022), Sea level variability in the ENSO region of the Pacific Ocean, Hydrometeorology and Ecology. Proceedings of the Russian State Hydrometeorological University, (68), 463–477, https://doi.org/10.33933/2713-3001-2022-68-463-477 (in Russian).
32. Malinin, V. N., and P. A. Vainovsky (2020), Interannual variability in sea ice area of the Antarctic regions, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 17(3), 187–201, https://doi.org/10.21046/2070-7401-2020-17-3-187-201 (in Russian).
33. Malinin, V. N., and P. A. Vainovsky (2022), On the interannual variability of the most intense sources and sinks of CO2 in the ocean based on observational data, Hydrometeorology and Ecology. Proceedings of the Russian State Hydrometeorological University, (66), 51–70, https://doi.org/10.33933/2713-3001-2022-66-51-70 (in Russian).
34. Massing, J. C., A. Schukat, H. Auel, D. Auch, et al. (2022), Toward a Solution of the "Peruvian Puzzle": Pelagic Food-Web Structure and Trophic Interactions in the Northern Humboldt Current Upwelling System Off Peru, Frontiers in Marine Science, 8, https://doi.org/10.3389/fmars.2021.759603.
35. Nixon, S., and A. Thomas (2001), On the size of the Peru upwelling ecosystem, Deep Sea Research Part I: Oceanographic Research Papers, 48(11), 2521–2528, https://doi.org/10.1016/S0967-0637(01)00023-1.
36. Penven, P., V. Echevin, J. Pasapera, F. Colas, and J. Tam (2005), Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach, Journal of Geophysical Research: Oceans, 110(C10), https://doi.org/10.1029/2005JC002945.
37. R Core Team (2021), The R Project for Statistical Computing, https://www.R-project.org/, (date of access: 03.02.2023).
38. Ramos, J. E., J. Tam, V. Aramayo, F. A. B. no, et al. (2022), Climate vulnerability assessment of key fishery resources in the Northern Humboldt Current System, Scientific Reports, 12(1), https://doi.org/10.1038/s41598-022-08818-5.
39. Rosales Quintana, G. M., R. Marsh, and L. A. Icochea Salas (2021), Interannual variability in contributions of the Equatorial Undercurrent (EUC) to Peruvian upwelling source water, Ocean Science, 17(5), 1385–1402, https://doi.org/10.5194/os-17-1385-2021.
40. Rousseaux, C. S. G., R. Lowe, M. Feng, A. M. Waite, and P. A. Thompson (2012), The role of the Leeuwin Current and mixed layer depth on the autumn phytoplankton bloom off Ningaloo Reef, Western Australia, Continental Shelf Research, 32, 22–35, https://doi.org/10.1016/j.csr.2011.10.010.
41. SENAMHI (2014), El fenómeno EL NIÑO en el Perú, http://issuu.com/senamhi_peru/docs/el_nino.
42. Swartzman, G., A. Bertrand, M. Gutiérrez, S. Bertrand, and L. Vasquez (2008), The relationship of anchovy and sardine to water masses in the Peruvian Humboldt Current System from 1983 to 2005, Progress in Oceanography, 79(2–4), 228–237, https://doi.org/10.1016/j.pocean.2008.10.021.
43. Tarazona, J., and W. Arntz (2001), The Peruvian Coastal Upwelling System, in Coastal Marine Ecosystems of Latin America, pp. 229–244, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-662-04482-7_17.
44. Wang, L., H. Gao, J. Shi, and L. Xie (2019), A Numerical Study on the Impact of High-Frequency Winds on the Peru Upwelling System during 2014-2016, Journal of Marine Science and Engineering, 7(5), 161, https://doi.org/10.3390/jmse7050161.
45. Zavala, R., D. Gutiérrez, R. Morales, et al. (Eds.) (2019), Avances del Perú en la adaptación al cambio climático del sector pesquero y del ecosistema marino-costero, 125 pp., Banco Interamericano de Desarrollo, https://doi.org/10.18235/0001647.