Kaliningrad, Kalinigrad, Russian Federation
Kaliningrad, Kalinigrad, Russian Federation
Kaliningrad, Kalinigrad, Russian Federation
UDK 504.75 Экология человека и окружающая среда
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
The paper provides original data on accumulation capabilities of bryophytes typical of peatland ecosystems with different degree of anthropogenic transformation occurring in the Kaliningrad Region of Russia. A key study area was the Vittgirrensky Peatland, abandoned after milled peat extraction in 1990s and designated as the Rossyanka Carbon Measurement Supersite in 2021. The accumulation of micro- and macroelements: Ca, Mn, Fe, Ni, Zn, Br, Rb, and Sr – was identified by means of X-ray fluorescence spectroscopy in 13 bryophyte species (Aulacomnium palustre, Campylopus introflexus, Polytrichum commune, P. strictum, Sphagnum capillifolium, S. centrale, S. cuspidatum, S. fuscum, S. magellanicum, S. riparium, S. squarrosum, S. teres) focusing on comparison with the reference species Pleurozium schreberi. The records of average element concentrations from the Vittgirrensky Peatland are shown to be distinctly lower than the regional background level. The accumulation of Mn, Ni, Br, Rb, and Sr varies significantly among disturbed and natural sites: the concentrations are comparable for Fe and Zn, while cut-over peatlands showed the level of Mn several times less than in undisturbed peat bogs. Aulacomnium palustre can be recommended for passive biomonitoring purposes on bog ecosystems as having most similar accumulation capability to the reference species Pleurozium schreberi that is widely recognized as indicator of atmospheric air pollution.
element accumulation; bryophyte; drained peatlands; X-ray fluorescence analysis; biomonitoring; Sphagnum; Kaliningrad region
1. Ananyan A. S., Koroleva Yu. V., Alekseenok Yu. V. i dr. Biomonitoring tyazhelyh metallov na territorii Kaliningradskoy oblasti // Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal. - 2020. - T. 12, № 102. - S. 25-31. - DOI:https://doi.org/10.23670/IRJ.2020.102.12.038.
2. Ashihmina T. Ya., Timonyuk V. M., Bol'shakova E. V. i dr. Moh Pleurozium schreberi kak bioindikator zagryazneniya atmosfery v rayone vliyaniya ob'ekta po unichtozheniyu himicheskogo oruzhiya // Estestvoznanie i gumanizm: Sbornik nauchnyh trudov. - Tomsk : Nacional'nyy issledovatel'skiy Tomskiy gosudarstvennyy universitet, 2008. - S. 112-113.
3. Bardunov L. V. Drevneyshie na sushe / pod red. F. E. Reymers. - Novosibirsk : Nauka, 1984. - S. 157.
4. Bogdanova Ya. A., Prohorova N. V., Vergel' K. N. i dr. Osobennosti nakopleniya tyazhelyh metallov i metalloidov v fitomasse bokoplodnogo mha Pleurozium schreberi (Brid.) Mitt. v usloviyah Krasnosamarskogo lesnogo massiva (Samarskaya oblast') i nacional'nogo parka «Buzulukskiy bor» (Orenburgskaya oblast') // Samarskiy nauchnyy vestnik. - 2022. - T. 11, № 1. - S. 24-30. - DOI:https://doi.org/10.55355/snv2022111101.
5. Buraeva E. A., Stasov V. V., Malyshevskiy V. S. i dr. Sezonnoe povedenie 7Ve v prizemnom sloe vozduha g. Rostova-na-Donu // Fundamental'nye issledovaniya. - 2013. - T. 1. - S. 177-180.
6. Kabata-Pendias A., Pendias H. Mikroelementy v pochvah i rasteniyah. - Moskva : MIR, 1989. - S. 439.
7. Karbonovyy poligon «Rosyanka». Nauchno-obrazovatel'nyy proekt po izucheniyu klimaticheski aktivnyh parnikovyh gazov. - 2021. - URL: http://rosyanka.kantiana.ru/ (data obr. 17.07.2023).
8. Kovalevskiy A. L. Biogeohimiya rasteniy. - Nauka, 1991. - S. 290.
9. Koroleva Yu. V. Bioindikaciya atmosfernyh vypadeniy tyazhelyh metallov na territorii Kaliningradskoy oblasti // Vestnik Rossiyskogo gosudarstvennogo universiteta im. I. Kanta. - 2006. - T. 7. - S. 39-44.
10. Koroleva Yu. V. Ispol'zovanie mhov Hylocomium splendens i Pleurozium schreberi dlya ocenki absolyutnyh znacheniy atmosfernyh vypadeniy tyazhelyh metallov v Kaliningradskoy oblasti // Vestnik Rossiyskogo gosudarstven- nogo universiteta im. I. Kanta. - 2010. - T. 7. - S. 29-34.
11. Mezhibor A. M., Bol'shunova T. S. Biogeohimicheskaya harakteristika sfagnovyh mhov i epifitnyh lishaynikov v rayonah neftegazodobyvayuschego kompleksa Tomskoy oblasti // Izvestiya Tomskogo politehnicheskogo universiteta. - 2014. - T. 325, № 1. - S. 205-213.
12. Menning U. D., Fedder U. A. Biomonitoring zagryazneniya atmosfery s pomosch'yu rasteniy. - Leningrad : Gidrometeoizdat, 1975. - S. 141.
13. Napreenko M. G. Bolotnye ekosistemy // Priroda Kaliningradskoy oblasti. Vodnye ob'ekty. - Kaliningrad : Istok, 2015. - S. 56-76. - (spravochnoe posobie).
14. Napreenko M. G., Anciferova O. A., Napreenko-Dorohova T. V. i dr. Rekonstrukciya izmeneniy klimata i uglerodnogo balansa kak zadacha karbonovyh poligonov (na primere karbonovogo poligona «Rosyanka» v Kaliningradskoy oblasti) // Sbornik materialov mezhdunarodnoy nauchno-issledovatel'skoy konferencii «Emissiya parnikovyh gazov segodnya i v geologicheskom proshlom: istochniki, vliyanie na klimat i okruzhayuschuyu sredu». - Kazan' : Kazanskiy federal'nyy universitet, 2022a. - S. 32.
15. Napreenko M. G., Napreenko-Dorohova T. V., Karelina V. I. i dr. Monitoring vidovogo sostava i ekologo-cenoticheskih harakteristik sfagnovyh mhov na karbonovom poligone «Rosyanka» (Kaliningradskaya oblast') // Vestnik Baltiyskogo federal'nogo universiteta im. I. Kanta. Seriya: Estestvennye i medicinskie nauki. - 2022b. - T. 1. - S. 73-87.
16. Napreenko M. G., Samerhanova A. K., Anciferova O. A. i dr. Ekologicheskaya reabilitaciya vodno-bolotnyh ekosistem v ramkah funkcionirovaniya karbonovogo poligona v Kaliningradskoy oblasti // Izuchenie vodnyh i nazemnyh ekosistem: istoriya i sovremennost'. Mezhdunarodnaya nauchnaya konferenciya, posvyaschennaya 150- letiyu Sevastopol'skoy biologicheskoy stancii - Instituta biologii yuzhnyh morey imeni A. O. Kovalevskogo i 45-letiyu NIS «Professor Vodyanickiy», 13-18 sentyabrya 2021 g. - Sevastopol' : Institut biologii yuzhnyh morey imeni A. O. Kovalevskogo RAN, 2021. - S. 641-642.
17. Nifontova M. G. Dinamika soderzhaniya dolgozhivuschih radionuklidov v mohovo-lishaynikovoy rastitel'nosti // Ekologiya. - 1997. - T. 4. - S. 273-277.
18. Noskova M. G. Polevoy atlas-opredelitel' sfagnovyh mhov taezhnoy zony Evropeyskoy Rossii. - Tula : Akvarius, 2016. - S. 112.
19. Shevchenko V. P., Filippov D. A., Gordeev V. V. i dr. Soderzhanie tyazhelyh metallov v sfagnovyh mhah Vologodskoy oblasti // Sovremennye problemy nauki i obrazovaniya. - 2011. - T. 4.
20. Shimanskaya E. I., Varduni T. V., V'yuhina A. A. i dr. Razrabotka metoda biotestirovaniya nedifferencirovannyh faktorov sredy dlya territoriy, priurochennyh k zonam aktivnyh tektonicheskih razlomov, na osnove analiza raspredeleniya morfologicheskih izmeneniy u cenozoobrazuyuschih vidov derev'ev // Fundamental'nye issledovaniya. - 2013. - T. 6. - S. 1778-1813.
21. Adamo P., Giordano S., Vingiani S., et al. Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy) // Environmental Pollution. - 2003. - Vol. 122, no. 1. - P. 91-103. - DOI:https://doi.org/10.1016/s0269- 7491(02)00277-4.
22. Astolfi M. L., Massimi L., Rapa M., et al. A multi-analytical approach to studying the chemical composition of typical carbon sink samples // Scientific Reports. - 2023. - Vol. 13, no. 1. - P. 1-12. - DOI:https://doi.org/10.1038/s41598-023-35180-x.
23. Aulio K. Metal accumulation capacity of five species of Sphagnum moss // Bulletin of Environmental Contamination and Toxicology. - 1985. - Vol. 35, no. 1. - P. 439-442. - DOI:https://doi.org/10.1007/bf01636535.
24. Ávila-Pérez P., Longoria-Gándara L. C., García-Rosales G., et al. Monitoring of elements in mosses by instrumental neutron activation analysis and total X-ray fluorescence spectrometry // Journal of Radioanalytical and Nuclear Chemistry. - 2018. - Vol. 317, no. 1. - P. 367-380. - DOI:https://doi.org/10.1007/s10967-018-5896-z.
25. Barry A., Ooi S. K., Helton A. M., et al. Carbon Dynamics Vary Among Tidal Marsh Plant Species in a Sea-level Rise Experiment // Wetlands. - 2023. - Vol. 43, no. 7. - DOI:https://doi.org/10.1007/s13157-023-01717-z.
26. Berg T., Pedersen U., Steinnes E. Environmental indicators for long-range atmospheric transported heavy metals based on national moss surveys // Environmental Monitoring and Assessment. - 1996. - Vol. 43, no. 1. - P. 11-17. - DOI:https://doi.org/10.1007/BF00399567.
27. Berg T., Røyset O., Steinnes E., et al. Atmospheric trace element deposition: Principal component analysis of ICP- MS data from moss samples // Environmental Pollution. - 1995. - Vol. 88, no. 1. - P. 67-77. - DOI:https://doi.org/10.1016/0269-7491(95)91049-Q.
28. Bowen H. Environmental Chemistry of the Elements. - Academic Press, 1979. - P. 333.
29. Clark R. B. Effect of aluminum on growth and mineral elements of al-tolerant and Al-intolerant corn // Plant and Soil. - 1977. - Vol. 47, no. 3. - P. 653-662. - DOI:https://doi.org/10.1007/BF00011034.
30. Daniels R. E., Eddy A. Handbook of European Sphagna. - Institute of Terrestrial Ecology, 1985. - P. 263.
31. Dierßen K. Bestimmungsschlüssel der Torfmoose in Norddeutschland. Vol. 50. - Mitteilungen der Arbeitsgemeinschaft Geobotanik in Schleswig-Holstein und Hamburg, 1996.
32. European surveys of heavy metal accumulation in mosses. - 2017. - URL: https://icpvegetation.ceh.ac.uk/our- science/heavy-metals (visited on 07/17/2023).
33. Fernández J. A., Carballeira A. A comparison of indigenous mosses and topsoils for use in monitoring atmospheric heavy metal deposition in Galicia (northwest Spain) // Environmental Pollution. - 2001. - Vol. 114, no. 3. - P. 431-441. - DOI:https://doi.org/10.1016/s0269-7491(00)00229-3.
34. Fernández J. A., Carballeira A. Biomonitoring metal deposition in Galicia (NW Spain) with mosses: factors affecting bioconcentration // Chemosphere. - 2002. - Vol. 46, no. 4. - P. 535-542. - DOI:https://doi.org/10.1016/s0045-6535(01)00060-1. Fernández J. A., Puche F., Gimeno C., et al. Primeros datos sobre el biocontrol de la deposición atmosférica de metales pesados en las provincias de Valencia, Castellón y Teruel mediante musgos terrestres // Ecología. - 1999. - Vol. 13. - P. 83-91.
35. Frontasyeva M., Vergel K., Urošević M. A., et al. Mosses as biomonitors of air pollution: 2015/2016 survey on heavy metals, nitrogen and POPs in Europe and beyond : tech. rep. / Report of the ICP Vegetation Moss Survey Coordination Centre. - Dubna, Russian Federation, 2020. - DOI:https://doi.org/10.13140/RG.2.2.30159.71848.
36. Frontasyeva M. V., Galinskaya T. Y., Krmar M., et al. Atmospheric deposition of heavy metals in northern Serbia and Bosnia-Herzegovina studied by the moss biomonitoring, neutron activation analysis and GIS technology // Journal of Radioanalytical and Nuclear Chemistry. - 2004. - Vol. 259, no. 1. - P. 141-144. - DOI:https://doi.org/10.1023/b:jrnc.0000015819.67830.60.
37. Galsomiès L., Letrouit M. A., Deschamps C., et al. Atmospheric metal deposition in France: initial results on moss calibration from the 1996 biomonitoring // Science of The Total Environment. - 1999. - Vol. 232, no. 1/2. - P. 39-47. - DOI:https://doi.org/10.1016/s0048-9697(99)00108-4.
38. Galuszka A. Geochemical background of selected trace elements in mosses Pleurozium schreberi (Brid.) Mitt. and Hylocomium splendens (Hedw.). B.S.G. from Wigierski National Park // Polish Journal of Environmental Study. - 2006. - Vol. 15, 2a. - P. 72-77.
39. González A. G., Pokrovsky O. S. Metal adsorption on mosses: Toward a universal adsorption model // Journal of Colloid and Interface Science. - 2014. - Vol. 415. - P. 169-178. - DOI:https://doi.org/10.1016/j.jcis.2013.10.028.
40. Gorelova S. V., Frontasyeva M. V., Volkova E. V., et al. Trace element accumulating ability of different moss species used to study atmospheric deposition of heavy metals in Central Russia: Tula Region case study // International Journal of Biology and Biomedical Engineering. - 2016. - Vol. 10. - P. 271-285.
41. Grodzińska K., Szarek-Łukaszewska G. Response of mosses to the heavy metal deposition in Poland - an overview // Environmental Pollution. - 2001. - Vol. 114, no. 3. - P. 443-451. - DOI:https://doi.org/10.1016/s0269-7491(00)00227-x.
42. Harmens H., Norris D. A., Sharps K., et al. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010 // Environmental Pollution. - 2015. - Vol. 200. - P. 93-104. - DOI:https://doi.org/10.1016/j.envpol.2015.01.036.
43. Harmens H., Norris D. A., Steinnes E., et al. Mosses as biomonitors of atmospheric heavy metal deposition: Spatial patterns and temporal trends in Europe // Environmental Pollution. - 2010. - Vol. 158, no. 10. - P. 3144-3156. - DOI:https://doi.org/10.1016/j.envpol.2010.06.039.
44. Ignatov M. S., Afonina O. M., Ignatova E. A., et al. Checklist of mosses of East Europe and North Asia // Arctoa. - 2006. - Vol. 15, no. 1. - P. 1-130. - DOI:https://doi.org/10.15298/arctoa.15.01.
45. Itoh S., Yumura V. Studies on the contamination of vegetable crops by excessive absorption of heavy metals // Bulletin of the Vegetable and Ornamental Crops Research Station. - 1979. - Vol. 6a, no. 123.
46. Kempter H., Krachler M., Shotyk W., et al. Validating modelled data on major and trace element deposition in southern Germany using Sphagnum moss // Atmospheric Environment. - 2017. - Vol. 167. - P. 656-664. - DOI:https://doi.org/10.1016/j.atmosenv.2017.08.037.
47. Koroleva Y., Napreenko M., Baymuratov R., et al. Bryophytes as a bioindicator for atmospheric deposition in different coastal habitats (a case study in the Russian sector of the Curonian Spit, South-Eastern Baltic) // International Journal of Environmental Studies. - 2019. - Vol. 77, no. 1. - P. 152-162. - DOI:https://doi.org/10.1080/00207233.2019.1594301.
48. Manninen S., Sassi M.-K., Lovén K. Effects of nitrogen oxides on ground vegetation, Pleurozium schreberi and the soil beneath it in urban forests // Ecological Indicators. - 2013. - Vol. 24. - P. 485-493. - DOI:https://doi.org/10.1016/j.ecolind.2012.08.008.
49. Markert B., Reus U., Herpin U. The application of TXRF in instrumental multielement analysis of plants, demonstrated with species of moss // Science of The Total Environment. - 1994. - Vol. 152, no. 3. - P. 213-220. - DOI:https://doi.org/10.1016/0048-9697(94)90312-3.
50. Markert B., Weckert V. Time-and-site integrated long-term biomonitoring of chemical elements by means of mosses // Toxicological & Environmental Chemistry. - 1993. - Vol. 40, no. 1-4. - P. 43-56. - DOI:https://doi.org/10.1080/02772249309357930.
51. McBride M. B. Retention of Cu2+, Ca2+, Mg2+, and Mn2+ by Amorphous Alumina // Soil Science Society of America Journal. - 1978. - Vol. 42, no. 1. - P. 27-31. - DOI:https://doi.org/10.2136/sssaj1978.03615995004200010007x.
52. Nagajyoti P. C., Lee K. D., Sreekanth T. V. M. Heavy metals, occurrence and toxicity for plants: a review // Environmental Chemistry Letters. - 2010. - Vol. 8, no. 3. - P. 199-216. - DOI:https://doi.org/10.1007/s10311-010-0297-8.
53. Onianwa P. C. Monitoring atmospheric metal pollution: a review of the use of mosses as indicators // Environmental Monitoring and Assessment. - 2001. - Vol. 71, no. 1. - P. 13-50. - DOI:https://doi.org/10.1023/A:1011660727479.
54. Pais I., Fehér M., Farkas E., et al. Titanium as a new trace element // Communications in Soil Science and Plant Analysis. - 1977. - Vol. 8, no. 5. - P. 407-410. - DOI:https://doi.org/10.1080/00103627709366732.
55. Pakarinen P., Tolonen K. Regional survey of heavy metals in peat mosses (Sphagnum) // AMBIO A Journal of the Human Environment. - 1976. - Vol. 5, no. 1. - P. 38-40.
56. Rasmussen L., Johnsen I. Uptake of Minerals, Particularly Metals, by Epiphytic Hypnum Cupressiforme // Oikos. - 1976. - Vol. 27, no. 3. - P. 483. - DOI:https://doi.org/10.2307/3543466.
57. Rühling Å., Larsen M. M., Department of Terrestrial Ecology. Atmospheric Heavy Metal Deposition in Europe 1995-1996 / ed. by E. Steinnes. - Nordic Council of Ministers, 1998. - P. 67.
58. Rühling Å., Skaerby L. National survey of regional heavy metal lead (Pb), cadmium (Cd), copper (Cu), nickel (Ni), vanadium (V), zinc (Zn) concentrations in moss Hylocomium splendens, Hypnum cupressiforme, Pleurozium schreberi, Sweden // Statens Naturvaardsverk. - 1979. - P. 28.
59. Rühling Å., Tyler G., Ruhling A. Sorption and Retention of Heavy Metals in the Woodland Moss Hylocomium splendens (Hedw.) Br. et Sch. // Oikos. - 1970. - Vol. 21, no. 1. - P. 92. - DOI:https://doi.org/10.2307/3543844.
60. Ryzhakova N. K., Rogova N. S., Borisenko A. L. Research of Mosses Accumulation Properties Used for Assessment of Regional and Local Atmospheric Pollution // Environmental Research, Engineering and Management. - 2014. - Vol. 69, no. 3. - P. 84-91. - DOI:https://doi.org/10.5755/j01.erem.69.3.5566.
61. Šoltés R., Gregušková E. Accumulation Characteristics of Some Elements in the Moss Polytrichum commune (Bryophytes) Based on XRF Spectrometry // Journal of Environmental Protection. - 2013. - Vol. 04, no. 06. - P. 522-528. - DOI:https://doi.org/10.4236/jep.2013.46061.
62. Steinnes E., Hanssen J. E., Rambæk J. P., et al. Atmospheric deposition of trace elements in Norway: Temporal and spatial trends studied by moss analysis // Water, Air, and Soil Pollution. - 1994. - Vol. 74, no. 1/2. - P. 121-140. - DOI:https://doi.org/10.1007/bf01257151.
63. Temmink R. J. M., Robroek B. J. M., Dijk G. van, et al. Wetscapes: Restoring and maintaining peatland landscapes for sustainable futures // Ambio. - 2023. - Vol. 52, no. 9. - P. 1519-1528. - DOI:https://doi.org/10.1007/s13280-023-01875-8.
64. Viana M., Hammingh P., Colette A., et al. Impact of maritime transport emissions on coastal air quality in Europe // Atmospheric Environment. - 2014. - Vol. 90. - P. 96-105. - DOI:https://doi.org/10.1016/j.atmosenv.2014.03.046.
65. Vuković G., Urošević M. A., Goryainova Z., et al. Active moss biomonitoring for extensive screening of urban air pollution: Magnetic and chemical analyses // Science of The Total Environment. - 2015. - Vol. 521/522. - P. 200-210. - DOI:https://doi.org/10.1016/j.scitotenv.2015.03.085.
66. Vyas B. N., Mistry K. B. Influence of clay mineral type and organic matter content on the uptake of 239Pu and 241Am by plants // Plant and Soil. - 1981. - Vol. 59, no. 1. - P. 75-82. - DOI:https://doi.org/10.1007/BF02183593.
67. Wehr J. D. Accumulation of heavy metals by aquatic bryophytes in streams and rivers in northern England : Durham theses / Wehr J. D. - Durham University, 1983. - P. 435.
68. Zawadzki K., Samecka-Cymerman A., Kolon K., et al. Metals in Pleurozium schreberi and Polytrichum commune from areas with various levels of pollution // Environmental Science and Pollution Research. - 2016. - Vol. 23, no. 11. - P. 11100-11108. - DOI:https://doi.org/10.1007/s11356-016-6278-0.
69. Zechmeister H. G. Annual growth of four pleurocarpous moss species and their applicability for biomonitoring heavy metals // Environmental Monitoring and Assessment. - 1998. - Vol. 52, no. 3. - P. 441-451. - DOI:https://doi.org/10.1023/A:1005843032625.