Kaliningrad, Kalinigrad, Russian Federation
Kaliningrad, Kalinigrad, Russian Federation
Kaliningrad, Kalinigrad, Russian Federation
UDC 504.75
UDC 55
UDC 550.34
UDC 550.383
CSCSTI 37.01
CSCSTI 37.15
CSCSTI 37.25
CSCSTI 37.31
CSCSTI 38.01
CSCSTI 36.00
CSCSTI 37.00
CSCSTI 38.00
CSCSTI 39.00
CSCSTI 52.00
Russian Classification of Professions by Education 05.00.00
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 63
BISAC SCI SCIENCE
The paper provides original data on accumulation capabilities of bryophytes typical of peatland ecosystems with different degree of anthropogenic transformation occurring in the Kaliningrad Region of Russia. A key study area was the Vittgirrensky Peatland, abandoned after milled peat extraction in 1990s and designated as the Rossyanka Carbon Measurement Supersite in 2021. The accumulation of micro- and macroelements: Ca, Mn, Fe, Ni, Zn, Br, Rb, and Sr – was identified by means of X-ray fluorescence spectroscopy in 13 bryophyte species (Aulacomnium palustre, Campylopus introflexus, Polytrichum commune, P. strictum, Sphagnum capillifolium, S. centrale, S. cuspidatum, S. fuscum, S. magellanicum, S. riparium, S. squarrosum, S. teres) focusing on comparison with the reference species Pleurozium schreberi. The records of average element concentrations from the Vittgirrensky Peatland are shown to be distinctly lower than the regional background level. The accumulation of Mn, Ni, Br, Rb, and Sr varies significantly among disturbed and natural sites: the concentrations are comparable for Fe and Zn, while cut-over peatlands showed the level of Mn several times less than in undisturbed peat bogs. Aulacomnium palustre can be recommended for passive biomonitoring purposes on bog ecosystems as having most similar accumulation capability to the reference species Pleurozium schreberi that is widely recognized as indicator of atmospheric air pollution.
element accumulation; bryophyte; drained peatlands; X-ray fluorescence analysis; biomonitoring; Sphagnum; Kaliningrad region
1. Ananyan A. S., Koroleva Y. V., Alekseyenok Y. V., et al. Biomonitoring of heavy metals in Kaliningrad oblast // International Research Journal. — 2020. — Vol. 12, no. 102. — P. 25–31. — DOI:https://doi.org/10.23670/IRJ.2020.102.12.038.
2. Ashikhmina T. Y., Timonyuk V. M., Bolshakova E. V., et al. Moss Pleurozium schreberi as a bioindicator of air pollution in the area of influence of a chemical weapons destruction facility // Natural sciences & humanism. — Tomsk : National Research Tomsk State University, 2008. — P. 112–113.
3. Bardunov L. V. The Ancients on Land / ed. by F. E. Reimers. — Novosibirsk : Nauka, 1984. — P. 157
4. Bogdanova Y. A., Prokhorova N. V., Vergel K. N., et al. The features of heavy metals and metalloids accumulation in the phytomass of the amphipodous moss Pleurozium schreberi (Brid.) Mitt. in the conditions of the Krasnosamarsky Forest area (Samara Region) and the National Park «Buzuluksky Bor» (Orenburg Region) // Samara Journal of Science. — 2022. — Vol. 11, no. 1. — P. 24–30. — DOI:https://doi.org/10.55355/snv2022111101.
5. Buraeva E. A., Stasov V. V., Malyshevsky V. S., et al. Seasonal behavior of 7Be in the surface air in Rostov-on-Don // Fundamental Research. — 2013. — Vol. 1. — P. 177–180
6. Kabata-Pendias A., Pendias H. Trace elements in soils and plants. — Moscow : MIR, 1989. — P. 439.
7. Carbon training ground «Rosyanka». Scientific and educational project on the study of climate-active greenhouse gases. — 2021. — (date of access: 2023-07-17). http://rosyanka.kantiana.ru/.
8. Kovalevskii A. L. Biogeochemistry of plants. — Nauka, 1991. — P. 290.
9. Koroleva Y. V. The bioindication of heavy metal precipitation in the Kaliningrad region // IKBFU’s Vestnik. — 2006. — Vol. 7. — P. 39–44.
10. Koroleva Y. V. Use of mosses Hylocomium splendens and Pleurozium schreberi for an estimation of absolute values of atmospheric losses of heavy metals in Kaliningrad areas // IKBFU’s Vestnik. — 2010. — Vol. 7. — P. 29–34.
11. Mezhibor A. M., Bolshunova T. S. Biogeochemical characteristics of sphagnum mosses and epiphytic lichens in the areas of the oil and gas production complex of the Tomsk region // Bulletin of the Tomsk Polytechnic University. — 2014. — Vol. 325, no. 1. — P. 205–213.
12. Menning W. J., Feder W. A. Biomonitoring air pollutants with plants. — Leningrad : Gidrometeoizdat, 1975. — P. 141.
13. Napreenko M. G. Wetland ecosystems // Nature of the Kaliningrad region. Water objects. — Kaliningrad : Istok, 2015. — P. 56–76. — (reference manual).
14. Napreenko M. G., Antsiferova O. A., Napreenko-Dorokhova T. V., et al. Reconstruction of climate change and carbon balance as a problem for carbon polygons (using the example of the Rosyanka carbon polygon in the Kaliningrad region) // Collection of materials of the international research conference “Greenhouse gas emissions today and in the geological past: sources, impact on climate and the environment”. — Kazan : Kazan Federal University, 2022a. — P. 32.
15. Napreenko M. G., Napreenko-Dorokhova T. V., Karelina V. I., et al. Species composition and habitat ecology of sphagna: inventory and monitoring programme on the Carbon polygon “Rossyanka” (Kaliningrad region, Russia) // IKBFU’s Vestnik. — 2022b. — Vol. 1. — P. 73–87
16. Napreenko M. G., Samerkhanova A. K., Antsiferova O. A., et al. Ecological rehabilitation of wetland ecosystems within the framework of the functioning of a carbon polygon in the Kaliningrad region // Study of Aquatic and Terrestrial Ecosystems: History and Contemporary State. International scientific conference dedicated to the 150th anniversary of the Sevastopol Biological Station - A. O. Kovalevsky Institute of Biology of the Southern Seas and to the 45th anniversary of research vessel “Professor Vodyanitsky”, 13-18 September, 2021. — Sevastopol : A. O. Kovalevsky Institute of Biology of the Southern Seas, 2021. — P. 641–642
17. Nifontova M. G. Dynamics of the content of long-lived radionuclides in moss-lichen vegetation // Ecology. — 1997. — Vol. 4. — P. 273–277.
18. Noskova M. G. Field atlas-identifier of sphagnum mosses of the taiga zone of European Russia. — Tula : Acvarius, 2016. — P. 112.
19. Shevchenko V. P., Filippov D. A., Gordeev V. V., et al. Contents of heavy metals in sphagnum mosses of Vologda region // Modern problems of science and education. — 2011. — Vol. 4.20.
20. Shimanskaya E. I., Varduni T. V., Vyukhina A. A., et al. The development of biotesting method undifferentiated environmental factors for the territories confined to zones of active tectonic faults based on analysis of morphological changes in cenosis formative tree species // Fundamental Research. — 2013. — Vol. 6. — P. 1778–1813.
21. Adamo P., Giordano S., Vingiani S., et al. Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy) // Environmental Pollution. - 2003. - Vol. 122, no. 1. - P. 91-103. - DOI:https://doi.org/10.1016/s0269- 7491(02)00277-4. EDN: https://elibrary.ru/BDDEPN
22. Astolfi M. L., Massimi L., Rapa M., et al. A multi-analytical approach to studying the chemical composition of typical carbon sink samples // Scientific Reports. - 2023. - Vol. 13, no. 1. - P. 1-12. - DOI:https://doi.org/10.1038/s41598-023-35180-x.
23. Aulio K. Metal accumulation capacity of five species of Sphagnum moss // Bulletin of Environmental Contamination and Toxicology. - 1985. - Vol. 35, no. 1. - P. 439-442. - DOI:https://doi.org/10.1007/bf01636535. EDN: https://elibrary.ru/PLWEIK
24. Ávila-Pérez P., Longoria-Gándara L. C., García-Rosales G., et al. Monitoring of elements in mosses by instrumental neutron activation analysis and total X-ray fluorescence spectrometry // Journal of Radioanalytical and Nuclear Chemistry. - 2018. - Vol. 317, no. 1. - P. 367-380. - DOI:https://doi.org/10.1007/s10967-018-5896-z. EDN: https://elibrary.ru/YIJUWD
25. Barry A., Ooi S. K., Helton A. M., et al. Carbon Dynamics Vary Among Tidal Marsh Plant Species in a Sea-level Rise Experiment // Wetlands. - 2023. - Vol. 43, no. 7. - DOI:https://doi.org/10.1007/s13157-023-01717-z.
26. Berg T., Pedersen U., Steinnes E. Environmental indicators for long-range atmospheric transported heavy metals based on national moss surveys // Environmental Monitoring and Assessment. - 1996. - Vol. 43, no. 1. - P. 11-17. - DOI:https://doi.org/10.1007/BF00399567.
27. Berg T., Røyset O., Steinnes E., et al. Atmospheric trace element deposition: Principal component analysis of ICP- MS data from moss samples // Environmental Pollution. - 1995. - Vol. 88, no. 1. - P. 67-77. - DOI:https://doi.org/10.1016/0269-7491(95)91049-Q. EDN: https://elibrary.ru/APHCTB
28. Bowen H. Environmental Chemistry of the Elements. - Academic Press, 1979. - P. 333.
29. Clark R. B. Effect of aluminum on growth and mineral elements of al-tolerant and Al-intolerant corn // Plant and Soil. - 1977. - Vol. 47, no. 3. - P. 653-662. - DOI:https://doi.org/10.1007/BF00011034. EDN: https://elibrary.ru/VOZMHX
30. Daniels R. E., Eddy A. Handbook of European Sphagna. - Institute of Terrestrial Ecology, 1985. - P. 263.
31. Dierßen K. Bestimmungsschlüssel der Torfmoose in Norddeutschland. Vol. 50. - Mitteilungen der Arbeitsgemeinschaft Geobotanik in Schleswig-Holstein und Hamburg, 1996.
32. European surveys of heavy metal accumulation in mosses. - 2017. - URL: https://icpvegetation.ceh.ac.uk/our- science/heavy-metals (visited on 07/17/2023).
33. Fernández J. A., Carballeira A. A comparison of indigenous mosses and topsoils for use in monitoring atmospheric heavy metal deposition in Galicia (northwest Spain) // Environmental Pollution. - 2001. - Vol. 114, no. 3. - P. 431-441. - DOI:https://doi.org/10.1016/s0269-7491(00)00229-3. EDN: https://elibrary.ru/LPVDHH
34. Fernández J. A., Carballeira A. Biomonitoring metal deposition in Galicia (NW Spain) with mosses: factors affecting bioconcentration // Chemosphere. - 2002. - Vol. 46, no. 4. - P. 535-542. - DOI:https://doi.org/10.1016/s0045-6535(01)00060-1.
35. Fernández J. A., Puche F., Gimeno C., et al. Primeros datos sobre el biocontrol de la deposición atmosférica de metales pesados en las provincias de Valencia, Castellón y Teruel mediante musgos terrestres // Ecología. - 1999. - Vol. 13. - P. 83-91.
36. Frontasyeva M., Vergel K., Urošević M. A., et al. Mosses as biomonitors of air pollution: 2015/2016 survey on heavy metals, nitrogen and POPs in Europe and beyond : tech. rep. / Report of the ICP Vegetation Moss Survey Coordination Centre. - Dubna, Russian Federation, 2020. - DOI:https://doi.org/10.13140/RG.2.2.30159.71848.
37. Frontasyeva M. V., Galinskaya T. Y., Krmar M., et al. Atmospheric deposition of heavy metals in northern Serbia and Bosnia-Herzegovina studied by the moss biomonitoring, neutron activation analysis and GIS technology // Journal of Radioanalytical and Nuclear Chemistry. - 2004. - Vol. 259, no. 1. - P. 141-144. - DOI:https://doi.org/10.1023/b:jrnc.0000015819.67830.60. EDN: https://elibrary.ru/LINNSB
38. Galsomiès L., Letrouit M. A., Deschamps C., et al. Atmospheric metal deposition in France: initial results on moss calibration from the 1996 biomonitoring // Science of The Total Environment. - 1999. - Vol. 232, no. 1/2. - P. 39-47. - DOI:https://doi.org/10.1016/s0048-9697(99)00108-4. EDN: https://elibrary.ru/ADDHQZ
39. Galuszka A. Geochemical background of selected trace elements in mosses Pleurozium schreberi (Brid.) Mitt. and Hylocomium splendens (Hedw.). B.S.G. from Wigierski National Park // Polish Journal of Environmental Study. - 2006. - Vol. 15, 2a. - P. 72-77.
40. González A. G., Pokrovsky O. S. Metal adsorption on mosses: Toward a universal adsorption model // Journal of Colloid and Interface Science. - 2014. - Vol. 415. - P. 169-178. - DOI:https://doi.org/10.1016/j.jcis.2013.10.028. EDN: https://elibrary.ru/QOOGTB
41. Gorelova S. V., Frontasyeva M. V., Volkova E. V., et al. Trace element accumulating ability of different moss species used to study atmospheric deposition of heavy metals in Central Russia: Tula Region case study // International Journal of Biology and Biomedical Engineering. - 2016. - Vol. 10. - P. 271-285. EDN: https://elibrary.ru/YBQEJV
42. Grodzińska K., Szarek-Łukaszewska G. Response of mosses to the heavy metal deposition in Poland - an overview // Environmental Pollution. - 2001. - Vol. 114, no. 3. - P. 443-451. - DOI:https://doi.org/10.1016/s0269-7491(00)00227-x. EDN: https://elibrary.ru/AQVNEP
43. Harmens H., Norris D. A., Sharps K., et al. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010 // Environmental Pollution. - 2015. - Vol. 200. - P. 93-104. - DOI:https://doi.org/10.1016/j.envpol.2015.01.036. EDN: https://elibrary.ru/UFKJJL
44. Harmens H., Norris D. A., Steinnes E., et al. Mosses as biomonitors of atmospheric heavy metal deposition: Spatial patterns and temporal trends in Europe // Environmental Pollution. - 2010. - Vol. 158, no. 10. - P. 3144-3156. - DOI:https://doi.org/10.1016/j.envpol.2010.06.039. EDN: https://elibrary.ru/OHPJKT
45. Ignatov M. S., Afonina O. M., Ignatova E. A., et al. Checklist of mosses of East Europe and North Asia // Arctoa. - 2006. - Vol. 15, no. 1. - P. 1-130. - DOI:https://doi.org/10.15298/arctoa.15.01. EDN: https://elibrary.ru/LAIOHT
46. Itoh S., Yumura V. Studies on the contamination of vegetable crops by excessive absorption of heavy metals // Bulletin of the Vegetable and Ornamental Crops Research Station. - 1979. - Vol. 6a, no. 123.
47. Kempter H., Krachler M., Shotyk W., et al. Validating modelled data on major and trace element deposition in southern Germany using Sphagnum moss // Atmospheric Environment. - 2017. - Vol. 167. - P. 656-664. - DOI:https://doi.org/10.1016/j.atmosenv.2017.08.037. EDN: https://elibrary.ru/YHCRBL
48. Koroleva Y., Napreenko M., Baymuratov R., et al. Bryophytes as a bioindicator for atmospheric deposition in different coastal habitats (a case study in the Russian sector of the Curonian Spit, South-Eastern Baltic) // International Journal of Environmental Studies. - 2019. - Vol. 77, no. 1. - P. 152-162. - DOI:https://doi.org/10.1080/00207233.2019.1594301. EDN: https://elibrary.ru/VBUOQO
49. Manninen S., Sassi M.-K., Lovén K. Effects of nitrogen oxides on ground vegetation, Pleurozium schreberi and the soil beneath it in urban forests // Ecological Indicators. - 2013. - Vol. 24. - P. 485-493. - DOI:https://doi.org/10.1016/j.ecolind.2012.08.008.
50. Markert B., Reus U., Herpin U. The application of TXRF in instrumental multielement analysis of plants, demonstrated with species of moss // Science of The Total Environment. - 1994. - Vol. 152, no. 3. - P. 213-220. - DOI:https://doi.org/10.1016/0048-9697(94)90312-3.
51. Markert B., Weckert V. Time-and-site integrated long-term biomonitoring of chemical elements by means of mosses // Toxicological & Environmental Chemistry. - 1993. - Vol. 40, no. 1-4. - P. 43-56. - DOI:https://doi.org/10.1080/02772249309357930.
52. McBride M. B. Retention of Cu2+, Ca2+, Mg2+, and Mn2+ by Amorphous Alumina // Soil Science Society of America Journal. - 1978. - Vol. 42, no. 1. - P. 27-31. - DOI:https://doi.org/10.2136/sssaj1978.03615995004200010007x.
53. Nagajyoti P. C., Lee K. D., Sreekanth T. V. M. Heavy metals, occurrence and toxicity for plants: a review // Environmental Chemistry Letters. - 2010. - Vol. 8, no. 3. - P. 199-216. - DOI:https://doi.org/10.1007/s10311-010-0297-8. EDN: https://elibrary.ru/WLGOTS
54. Onianwa P. C. Monitoring atmospheric metal pollution: a review of the use of mosses as indicators // Environmental Monitoring and Assessment. - 2001. - Vol. 71, no. 1. - P. 13-50. - DOI:https://doi.org/10.1023/A:1011660727479. EDN: https://elibrary.ru/XNSXCF
55. Pais I., Fehér M., Farkas E., et al. Titanium as a new trace element // Communications in Soil Science and Plant Analysis. - 1977. - Vol. 8, no. 5. - P. 407-410. - DOI:https://doi.org/10.1080/00103627709366732.
56. Pakarinen P., Tolonen K. Regional survey of heavy metals in peat mosses (Sphagnum) // AMBIO A Journal of the Human Environment. - 1976. - Vol. 5, no. 1. - P. 38-40.
57. Rasmussen L., Johnsen I. Uptake of Minerals, Particularly Metals, by Epiphytic Hypnum Cupressiforme // Oikos. - 1976. - Vol. 27, no. 3. - P. 483. - DOI:https://doi.org/10.2307/3543466.
58. Rühling Å., Larsen M. M., Department of Terrestrial Ecology. Atmospheric Heavy Metal Deposition in Europe 1995-1996 / ed. by E. Steinnes. - Nordic Council of Ministers, 1998. - P. 67.
59. Rühling Å., Skaerby L. National survey of regional heavy metal lead (Pb), cadmium (Cd), copper (Cu), nickel (Ni), vanadium (V), zinc (Zn) concentrations in moss Hylocomium splendens, Hypnum cupressiforme, Pleurozium schreberi, Sweden // Statens Naturvaardsverk. - 1979. - P. 28.
60. Rühling Å., Tyler G., Ruhling A. Sorption and Retention of Heavy Metals in the Woodland Moss Hylocomium splendens (Hedw.) Br. et Sch. // Oikos. - 1970. - Vol. 21, no. 1. - P. 92. - DOI:https://doi.org/10.2307/3543844.
61. Ryzhakova N. K., Rogova N. S., Borisenko A. L. Research of Mosses Accumulation Properties Used for Assessment of Regional and Local Atmospheric Pollution // Environmental Research, Engineering and Management. - 2014. - Vol. 69, no. 3. - P. 84-91. - DOI:https://doi.org/10.5755/j01.erem.69.3.5566.
62. Šoltés R., Gregušková E. Accumulation Characteristics of Some Elements in the Moss Polytrichum commune (Bryophytes) Based on XRF Spectrometry // Journal of Environmental Protection. - 2013. - Vol. 04, no. 06. - P. 522-528. - DOI:https://doi.org/10.4236/jep.2013.46061.
63. Steinnes E., Hanssen J. E., Rambæk J. P., et al. Atmospheric deposition of trace elements in Norway: Temporal and spatial trends studied by moss analysis // Water, Air, and Soil Pollution. - 1994. - Vol. 74, no. 1/2. - P. 121-140. - DOI:https://doi.org/10.1007/bf01257151. EDN: https://elibrary.ru/XXPXCU
64. Temmink R. J. M., Robroek B. J. M., Dijk G. van, et al. Wetscapes: Restoring and maintaining peatland landscapes for sustainable futures // Ambio. - 2023. - Vol. 52, no. 9. - P. 1519-1528. - DOI:https://doi.org/10.1007/s13280-023-01875-8.
65. Viana M., Hammingh P., Colette A., et al. Impact of maritime transport emissions on coastal air quality in Europe // Atmospheric Environment. - 2014. - Vol. 90. - P. 96-105. - DOI:https://doi.org/10.1016/j.atmosenv.2014.03.046. EDN: https://elibrary.ru/SPQQRR
66. Vuković G., Urošević M. A., Goryainova Z., et al. Active moss biomonitoring for extensive screening of urban air pollution: Magnetic and chemical analyses // Science of The Total Environment. - 2015. - Vol. 521/522. - P. 200-210. - DOI:https://doi.org/10.1016/j.scitotenv.2015.03.085. EDN: https://elibrary.ru/WTOMUR
67. Vyas B. N., Mistry K. B. Influence of clay mineral type and organic matter content on the uptake of 239Pu and 241Am by plants // Plant and Soil. - 1981. - Vol. 59, no. 1. - P. 75-82. - DOI:https://doi.org/10.1007/BF02183593. EDN: https://elibrary.ru/XZCJOC
68. Wehr J. D. Accumulation of heavy metals by aquatic bryophytes in streams and rivers in northern England : Durham theses / Wehr J. D. - Durham University, 1983. - P. 435.
69. Zawadzki K., Samecka-Cymerman A., Kolon K., et al. Metals in Pleurozium schreberi and Polytrichum commune from areas with various levels of pollution // Environmental Science and Pollution Research. - 2016. - Vol. 23, no. 11. - P. 11100-11108. - DOI:https://doi.org/10.1007/s11356-016-6278-0. EDN: https://elibrary.ru/WUUEKD
70. Zechmeister H. G. Annual growth of four pleurocarpous moss species and their applicability for biomonitoring heavy metals // Environmental Monitoring and Assessment. - 1998. - Vol. 52, no. 3. - P. 441-451. - DOI:https://doi.org/10.1023/A:1005843032625. EDN: https://elibrary.ru/ERDVOX



