from 01.01.2021 until now
Russian State Hydrometeorological University
from 01.01.2021 until now
University of Melbourne
UDK 551.466.3 Волнение (ветровые волны) и зыбь
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
Long-term calculations of the evolution of three-dimensional waves ranging from the early stage to energy stabilization were made on the basis of a two-dimensional phase-resolving model. The evolution of the main integral and spectral characteristics is analyzed along with the probability distribution for the elevation field and vertical velocity. The apparent property of self-similarity (i.e. the independence of the statistical structure of the field from the degree of wave development) for the wave field on the example of the first four moments for normalized fields of elevation and surface vertical velocity is shown. The conclusion is confirmed by the calculations with a three-dimensional model.
phase-resolving modeling, wave spectrum, wind waves, energy input, dissipation of wave energy, statistical characteristics of waves
1. Babanin A. Breaking and Dissipation of Ocean Surface Waves. — Cambridge University Press, 2011. — DOI:https://doi.org/10.1017/CBO9780511736162.
2. Causon D. M., Mingham C. G., Qian L. Developments in multi-fluid finite volume free surface capturing methods // Advances in Numerical Simulation of Nonlinear Water Waves. — WORLD SCIENTIFIC, 2010. — P. 397–427. — DOI:https://doi.org/10.1142/9789812836502_0011.
3. Chalikov D. Correction to: Accelerated reproduction of 2-D periodic waves // Ocean Dynamics. — 2021a. — Vol. 71, no. 4. — P. 491–491. — DOI:https://doi.org/10.1007/s10236-021-01450-3.
4. Chalikov D. High-Resolution Numerical Simulation of Surface Wave Development under the Action of Wind // Geophysics and Ocean Waves Studies. — IntechOpen, 2021b. — DOI:https://doi.org/10.5772/intechopen.92262.
5. Chalikov D. V. Numerical Modeling of Sea Waves. — Springer International Publishing, 2016. — DOI:https://doi.org/10.1007/978-3-319- 32916-1.
6. Ducrozet G., Bonnefoy F., Le Touzé D., et al. 3-D HOS simulations of extreme waves in open seas // Natural Hazards and Earth System Sciences. — 2007. — Vol. 7, no. 1. — P. 109–122. — DOI:https://doi.org/10.5194/nhess-7-109-2007.
7. Ducrozet G., Bonnefoy F., Le Touzé D., et al. HOS-ocean: Open-source solver for nonlinear waves in open ocean based on High-Order Spectral method // Computer Physics Communications. — 2016. — Vol. 203. — P. 245–254. — DOI:https://doi.org/10.1016/j.cpc.2016.02.017.
8. Engsig-Karup A. P., Bingham H. B., Lindberg O. An efficient flexible-order model for 3D nonlinear water waves // Journal of Computational Physics. — 2009. — Vol. 228, no. 6. — P. 2100–2118. — DOI:https://doi.org/10.1016/j.jcp.2008.11.028.
9. Engsig-Karup A. P., Madsen M. G., Glimberg S. L. A massively parallel GPU-accelerated model for analysis of fully nonlinear free surface waves // International Journal for Numerical Methods in Fluids. — 2011. — Vol. 70, no. 1. — P. 20–36. — DOI:https://doi.org/10.1002/fld.2675.
10. Fructus D., Clamond D., Grue J., et al. An efficient model for three-dimensional surface wave simulations // Journal of Computational Physics. — 2005. — Vol. 205, no. 2. — P. 665–685. — DOI:https://doi.org/10.1016/j.jcp.2004.11.027.
11. Greaves D. Advances in Numerical Simulation of Nonlinear Water Waves // Advances in Numerical Simulation of Nonlinear Water Waves. — WORLD SCIENTIFIC, 2010. — P. 357–396. — DOI:https://doi.org/10.1142/9789812836502_0010.
12. Issa R., Violeau D., Lee E.-S., et al. Modelling nonlinear water waves with RANS and LES SPH models // Advances in Numerical Simulation of Nonlinear Water Waves. — WORLD SCIENTIFIC, 2010. — P. 497–537. — DOI:https://doi.org/10.1142/9789812836502_0014.
13. Kim K. S., Kim M. H., Park J.-C. Development of Moving Particle Simulation Method for Multiliquid-Layer Sloshing // Mathematical Problems in Engineering. — 2014. — Vol. 2014. — P. 1–13. — DOI:https://doi.org/10.1155/2014/350165.
14. Kim Y. J., Baek H. M., Yang Y. J., et al. A Study on the High-Order Spectral Model Capability to Simulate a Fully Developed Nonlinear Sea States // Journal of Ocean Engineering and Technology. — 2023. — Vol. 37, no. 1. — P. 20–30. — DOI:https://doi.org/10.26748/KSOE.2022.034.
15. Lubin P., Caltagirone J.-P. Large eddy simulation of the hydrodynamics generated by breaking waves // Advances in Numerical Simulation of Nonlinear Water Waves. — WORLD SCIENTIFIC, 2010. — P. 575–604. — DOI:https://doi.org/10.1142/9789812836502_0016.
16. Ma Q. W., Yan S. Qale-FEM method and its application to the simulation of free responses of floating bodies and overturning waves // Advances in Numerical Simulation of Nonlinear Water Waves. — WORLD SCIENTIFIC, 2010. — P. 165–202. — DOI:https://doi.org/10.1142/9789812836502_0005.
17. Miles J. W. On the generation of surface waves by shear flows // Journal of Fluid Mechanics. — 1957. — Vol. 3, no. 02. — P. 185. — DOI:https://doi.org/10.1017/S0022112057000567.
18. Thomas L. H. Elliptic problems in linear differential equations over a network. — Columbia University (New York) : Watson Scientific Computing Laboratory Report, 1949.
19. Tolman H. L. User Manual and System Documentation of WAVEWATCH-III Version 3.14. — NOAA/NWS/NCEP/MMAB, 2009. — 220 p.
20. Young D.-L., Wu N.-J., Tsay T.-K. Method of fundamental solutions for fully nonlinear water waves // Advances in Numerical Simulation of Nonlinear Water Waves. — WORLD SCIENTIFIC, 2010. — P. 325–355. — DOI:https://doi.org/10.1142/9789812836502_0009.