EVALUATION OF THE GEOMECHANICAL PROPERTIES OF BASHKIRIAN CARBONATE ROCKS AT THE TATARSTAN REPUBLIC FOR OPTIMIZATION OF HYDRAULIC FRACTURING
Abstract and keywords
Abstract (English):
Every year, the percentage of development of complex and unconventional hydrocarbon reservoirs is increasing, which is associated with the depletion of traditional oil and gas reserves. Carbonate reservoirs are hard-to-recover reservoir rocks due to the high degree of heterogeneity. A more detailed study of the lithological features and physical properties of carbonate rocks is an important and integral part of the complex reservoirs development. In the present work has done a comprehensive analysis of the lithological and geomechanical properties of the Middle Carboniferous strata deposits of the Dachnoye oil field, located in the southeast of the Republic of Tatarstan. The main attention in the research was focused on the estimation of the britleness of rocks. Britleness index is necessary for correct prediction of hydraulic fracturing. The result of the research is the identification of carbonate facies and their geomechanical characteristics, as well as the estimation of the britleness of rocks by various methods.

Keywords:
geomechanics, lithology, geology, laboratory study, carbonate rock, rock britleness, hydraulic fracturing
Text
Publication text (PDF): Read Download
References

1. Kolchugin A. N., Ziganshin E. R., Morozov V. P., et al. Geomechanical and lithological characteristics of the Vereysky horizon in the Middle Carboniferous for prediction of hydraulic fracturing technology, on the example of the Ivinskoye field in the South-East of Tatarstan // Georesursy. - 2022. - Vol. 24, no. 4. - P. 65-74. - DOI:https://doi.org/10.18599/grs.2022.4.5.

2. Oil and gas potential of the Republic of Tatarstan. Geology and oil field development. Vol. 1 / ed. by R. K. Muslimov. - Kazan : "Fen", 2007. - P. 316.

3. Salimov O. V., Nasybullin A. V., Sakhabutdinov R. Z., et al. The Criteria for the Selection of Wells for Hydraulic Fracturing // Georesursy. - 2017. - Vol. 19, no. 4. - P. 368-373. - DOI:https://doi.org/10.18599/grs.19.4.10.

4. Khvorova I. V. Atlas of carbonate rocks of the Middle and Upper Carboniferous of the Russian Platform. - USSR Academy of Sciences, 1958. - P. 170.

5. Khisamov R. S., Gubaidullin A. A., Bazarevskaya V. G., et al. Geology of carbonate complex reservoirs of the Devonian and Carboniferous of Tatarstan. - Kazan : "Fen", 2010. - P. 283.

6. Altindag R. The evaluation of rock brittleness concept on rotary blast hole drills // The Journal of The South African Institute of Mining and Metallurgy. - 2002. - Vol. 102, no. 1. - P. 61-66.

7. Bishop J. W., Montañez I. P., Gulbranson E. L., et al. The onset of mid-Carboniferous glacio-eustasy: Sedimentologic and diagenetic constraints, Arrow Canyon, Nevada // Palaeogeography, Palaeoclimatology, Palaeoecology. - 2009. - Vol. 276, no. 1-4. - P. 217-243. - DOI:https://doi.org/10.1016/j.palaeo.2009.02.019.

8. Cho D., Perez M. Rock quality assessment for hydraulic fracturing: A rock physics perspective // SEG Technical Program Expanded Abstracts 2014. - Society of Exploration Geophysicists, 2014. - DOI:https://doi.org/10.1190/segam2014-1624.1.

9. Dubinya N., Bayuk I., Bakhmach M. Problems of Multiscale Brittleness Estimation for Hydrocarbon Reservoir Exploration and Development // Applied Sciences. - 2022. - Vol. 12, no. 3. - P. 1134. - DOI:https://doi.org/10.3390/app12031134.

10. Dunham R. J. Classification of Carbonate Rocks According to Depositional Texture // Classification of Carbonate Rocks-A Symposium. Vol. 1 / ed. by W. E. Ham. - American Association of Petroleum Geologists, 1962. - P. 108-121. - DOI:https://doi.org/10.1306/m1357.

11. Gong Q. M., Zhao J. Influence of rock brittleness on TBM penetration rate in Singapore granite // Tunnelling and Underground Space Technology. - 2007. - Vol. 22, no. 3. - P. 317-324. - DOI:https://doi.org/10.1016/j.tust.2006.07.004.

12. Hajiabdolmajid V., Kaiser P., Martin C. Mobilised strength components in brittle failure of rock // Géotechnique. - 2003. - Vol. 53, no. 3. - P. 327-336. - DOI:https://doi.org/10.1680/geot.2003.53.3.327.

13. Hetényi M. Handbook of Experimental Stress Analysis. - New York (USA): Wiley, 1950. - 1077 p.

14. Holt R., Fjaer E., Nes O. M., et al. A Shaly Look at Brittleness // 45th US Rock Mechanics/Geomechanics Symposium. - San Francisco, California : American Rock Mechanics Association, 2011.

15. Howell J. V. Glossary of Geology and Related Sciences. - American Geological Institute, 1960. - Washington, D. C.

16. Hucka V., Das B. Brittleness determination of rocks by different methods // International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. - 1974. - Vol. 11, no. 10. - P. 389-392. - DOI:https://doi.org/10.1016/0148-9062(74)91109-7.

17. Ingram G. M., Urai J. L. Top-seal leakage through faults and fractures: the role of mudrock properties // Geological Society, London, Special Publications. - 1999. - Vol. 158, no. 1. - P. 125-135. - DOI:https://doi.org/10.1144/gsl.sp.1999.158.01.10.

18. Jarvie D. M., Hill R. J., Ruble T. E., et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment // AAPG Bulletin. - 2007. - Vol. 91, no. 4. - P. 475-499. - DOI:https://doi.org/10.1306/12190606068.

19. Jin X., Shah S., Truax J., et al. A Practical Petrophysical Approach for Brittleness Prediction from Porosity and Sonic Logging in Shale Reservoirs // All Days. - SPE, 2014. - DOI:https://doi.org/10.2118/170972-ms.

20. Jin X., Shah S. N., Roegiers J.-C., et al. An Integrated Petrophysics and Geomechanics Approach for Fracability Evaluation in Shale Reservoirs // SPE Journal. - 2015. - Vol. 20, no. 03. - P. 518-526. - DOI:https://doi.org/10.2118/168589-pa.

21. Kolchugin A. N., Porta G. D., Morozov V. P., et al. Facies variability of pennsylvanian oil-saturated carbonate rocks (constraints from Bashkirian reservoirs of the south-east Tatarstan) // Georesursy. - 2020. - Vol. 22, no. 2. - P. 29-36. - DOI:https://doi.org/10.18599/grs.2020.2.29-36.

22. Luan X., Di B., Wei J., et al. Laboratory measurements of brittleness anisotropy in synthetic shale with different cementation // SEG Technical Program Expanded Abstracts 2014. - Society of Exploration Geophysicists, 2014. - DOI:https://doi.org/10.1190/segam2014-0432.1.

23. Mii H.-S., Grossman E. L., Yancey T. E., et al. Isotopic records of brachiopod shells from the Russian Platform - evidence for the onset of mid-Carboniferous glaciation // Chemical Geology. - 2001. - Vol. 175, no. 1/2. - P. 133-147. - DOI:https://doi.org/10.1016/s0009-2541(00)00366-1.

24. Morley A. Strength of Materials: with 260 Diagrams and Numerous Examples. - New York : Longmans, Green, Company, 1944.

25. Nasehi M. J., Mortazavi A. Effects of in-situ stress regime and intact rock strength parameters on the hydraulic fracturing // Journal of Petroleum Science and Engineering. - 2013. - Vol. 108. - P. 211-221. - DOI:https://doi.org/10.1016/j.petrol.2013.04.001.

26. Nygård R., Gutierrez M., Bratli R. K., et al. Brittle-ductile transition, shear failure and leakage in shales and mudrocks // Marine and Petroleum Geology. - 2006. - Vol. 23, no. 2. - P. 201-212. - DOI:https://doi.org/10.1016/j.marpetgeo.2005.10.001.

27. Ramsey J. Folding and Fracturing of Rock. - New York (USA) : McGraw-Hill, 1968.

28. Rickman R., Mullen M., Petre E., et al. A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays Are Not Clones of the Barnett Shale // All Days. - SPE, 2008. - DOI:https://doi.org/10.2118/115258-ms.

29. Sun S. Z., Wang K. N., Yang P., et al. Integrated Prediction of Shale Oil Reservoir Using Pre-Stack Algorithms for Brittleness and Fracture Detection // International Petroleum Technology Conference. - International Petroleum Technology Conference, 2013. - DOI:https://doi.org/10.2523/17048-ms.

30. Tarasov B., Potvin Y. Universal criteria for rock brittleness estimation under triaxial compression // International Journal of Rock Mechanics and Mining Sciences. - 2013. - Vol. 59. - P. 57-69. - DOI:https://doi.org/10.1016/j.ijrmms.2012.12.011.

31. Wood D. A. Brittleness index predictions from Lower Barnett Shale well-log data applying an optimized data matching algorithm at various sampling densities // Geoscience Frontiers. - 2021. - Vol. 12, no. 6. - P. 101087. - DOI:https://doi.org/10.1016/j.gsf.2020.09.016.

32. Yagiz S. Assessment of brittleness using rock strength and density with punch penetration test // Tunnelling and Underground Space Technology. - 2009. - Vol. 24, no. 1. - P. 66-74. - DOI:https://doi.org/10.1016/j.tust.2008.04.002.

33. Zhang D., Ranjith P. G., Perera M. S. A. The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: A review // Journal of Petroleum Science and Engineering. - 2016. - Vol. 143. - P. 158-170. - DOI:https://doi.org/10.1016/j.petrol.2016.02.011.

Login or Create
* Forgot password?