doctoral candidate
Moscow, Moscow, Russian Federation
UDK 52 Астрономия. Геодезия
UDK 550.3 Геофизика
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
Synoptic animations of internal displacements and deformations of the earth’s crust were obtained based on the results of continuous GNSS observations in Eastern Anatolia from 2009 to 2023. The spatiotemporal patterns of the seismic deformation process in connection with the tectonics of the region have been identified. It is shown that dilatation and total shear strains evolve in concert with the migration of the strongest earthquakes Elazig, Elazig-Malatya and devastate Karamanmaraş series. Two years before the occurrence of the devastating earthquakes of 2023, a deficit of internal displacements of GNSS stations developed in the area of their epicenters. The conducted research suggests that the strongest events of 2009-2023 are connected by a unitary seismic deformation process. The most important action in this case is the SW movement of the Anatolian block as monolithic element. In the development of movements and deformations, a flow of increasing stresses is observed in the direction from Karliova Triple Junction to the SW to the area of the strongest seismic events on February 2023. It originates east of the Karliova Triple Junction where the Arabian Plate encounters an obstacle. The role of mantle flows in the seismic process is assessed.
GNSS, crustal deformation, displacement deficit, earthquake migration, seismo-deformation process, synoptic analysis
1. Angus, D. A., D. C. Wilson, E. Sandvol, and J. F. Ni (2006), Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkey from S-wave receiver functions, Geophysical Journal International, 166(3), 1335-1346, https://doi.org/10.1111/j.1365-246X.2006.03070.x.
2. Bartol, J., and R. Govers (2014), A single cause for uplift of the Central and Eastern Anatolian plateau?, Tectonophysics, 637, 116-136, https://doi.org/10.1016/j.tecto.2014.10.002.
3. Çetin, H., H. Güneyli, and L. Mayer (2003), Paleoseismology of the Palu-Lake Hazar segment of the East Anatolian Fault Zone, Turkey, Tectonophysics, 374(3-4), 163-197, https://doi.org/10.1016/j.tecto.2003.08.003.
4. Dokukin, P., M. A. Guvenaltin, T. S. Irmak, V. Kaftan, and M. Toker (2023), Evolution of the crustal inner displacement deficit in a reference to Elazig earthquake series just before occurring the devastate Ekinozu-Nuradagi earthquakes (M7.5-7.8, 2023-02-06), https://doi.org/10.2205/ESDB-Ekinozu-Nurdagi-quakes.
5. Emre, O., T. Y. Duman, and H. Elmacı (2012), 1:250 000 Scale Active Fault Map Series of Turkey.
6. Gök, R., M. E. Pasyanos, and E. Zor (2007), Lithospheric structure of the continent-continent collision zone: eastern Turkey, Geophysical Journal International, 169(3), 1079-1088, https://doi.org/10.1111/j.1365-246X.2006.03288.x.
7. Gvishiani, A. D., V. N. Tatarinov, V. I. Kaftan, A. I. Manevich, V. A. Minaev, S. A. Ustinov, and R. V. Shevchuk (2022), Geodynamic Model of the Northern Part of the Nizhnekansk Massif: Fault Tectonics, Deformations, and Insulation Properties of Rock Displacements, Doklady Earth Sciences, 507(1), 909-915, https://doi.org/10.1134/S1028334X22600608.
8. Herring, T. A., M. A. Floyd, R. W. King, and S. C. McClusky (2018), Global Kalman filter VLBI and GPS Analysis Program, GLOBK Reference Manual, Release 10.6. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA.
9. Irmak, T. S., M. Toker, E. Yavuz, E. Şentürk, and M. A. Güvenaltın (2021), New insight into the 24 January 2020, Mw 6.8 Elazığ earthquake (Turkey): An evidence for rupture-parallel pull-apart basin activation along the East Anatolian Fault Zone constrained by Geodetic and Seismological data, Annals of Geophysics, 64(4), https://doi.org/10.4401/ag-8638.
10. Kaftan, V., and A. Melnikov (2019), Migration of Earth Surface Deformation as a Large Earthquake Trigger, pp. 71-78, Springer International Publishing, https://doi.org/10.1007/978-3-030-31970-0_8.
11. Kaftan, V., P. Dokukin, M. A. Guvenaltin, M. Toker, and T. S. Irmak (2023a), Fifteen-year evolution of the crustal dilatation in a reference to the recent East Anatolian earthquakes, https://doi.org/10.2205/ESDB-000877-d01.
12. Kaftan, V., P. Dokukin, M. A. Guvenaltin, M. Toker, and T. S. Irmak (2023b), Fifteen-year evolution of the crustal total shear strain in a reference to the recent East Anatolian earthquakes, https://doi.org/10.2205/ESDB-000877-d02.
13. Kaftan, V., P. Dokukin, M. A. Guvenaltin, M. Toker, and T. S. Irmak (2023c), Fifteen-year evolution of the crustal inner shear deficit in a reference to the recent East Anatolian earthquakes, https://doi.org/10.2205/ESDB-000877-d03.
14. Kaftan, V. I. (2021), An Analysis of Ground Movements and Deformations from 13-Year GPS Observations before and during the July 2019 Ridgecrest, USA Earthquakes, Journal of Volcanology and Seismology, 15(2), 97-106, https://doi.org/10.1134/S0742046321010115.
15. Kaftan, V. I., and V. N. Tatarinov (2022), Registration of Slow Deformation Waves According to GNSS Observations, Doklady Earth Sciences, 505(1), 489-495, https://doi.org/10.1134/S1028334X22070091.
16. Kaftan, V. I., V. N. Tatarinov, and R. V. Shevchuk (2022), Long-term changes in crustal movements and deformations before and during the 2016 Kumamoto earthquake sequence, Geodynamics & Tectonophysics, 13(1), https://doi.org/10.5800/GT-2022-13-1-0570.
17. Karaoğlu, O., J. Browning, M. K. Salah, A. Elshaafi, and A. Gudmundsson (2018), Depths of magma chambers at three volcanic provinces in the Karlıova region of Eastern Turkey, Bulletin of Volcanology, 80(9), https://doi.org/10.1007/s00445-018-1245-x.
18. KOERI, Boğaziçi University (2021), Kandilli Observatory and Earthquake Research Institute, Regional EarthquakeTsunami Monitoring Center: Earthquake Catalogue, http://www.koeri.boun.edu.tr/sismo/zeqdb/, (date of access: 01/12/2021).
19. Konca, A. O., H. Karabulut, S. E. Güvercin, F. Eskiköy, S. Özarpacı, A. Özdemir, M. Floyd, S. Ergintav, and U. Doğan (2021), From Interseismic Deformation With Near-Repeating Earthquakes to Co-Seismic Rupture: A Unified View of the 2020 Mw6.8 Sivrice (Elazığ) Eastern Turkey Earthquake, Journal of Geophysical Research: Solid Earth, 126(10), https://doi.org/10.1029/2021JB021830.
20. Kurt, A. İ., A. Cingöz, S. Özdemir, S. Peker, Ö. Özel, and M. Simav (2020), Türkiye Ulusal Temel GNSS Ağı (TUTGA) Güncel Koordinat ve Hızlarının GNSS Verilerinin Yeniden Değerlendirilmesi Kapsamında Hesaplanması, Harita Dergisi, 164, 1-17.
21. Kutoglu, H. S., M. Toker, and C. Mekik (2016), The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network, Journal of African Earth Sciences, 115, 246-270, https://doi.org/10.1016/j.jafrearsci.2015.12.002.
22. McClusky, S., S. Balassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev, O. Gurkan, M. Hamburger, K. Hurst, H. Kahle, K. Kastens, G. Kekelidze, R. King, V. Kotzev, O. Lenk, S. Mahmoud, A. Mishin, M. Nadariya, A. Ouzounis, D. Paradissis, Y. Peter, M. Prilepin, R. Reilinger, I. Sanli, H. Seeger, A. Tealeb, M. N. Toksöz, and G. Veis (2000), Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, Journal of Geophysical Research, 105(B3), 5695-5719, https://doi.org/10.1029/1996JB900351.
23. Reilinger, R., S. McClusky, P. Vernant, S. Lawrence, S. Ergintav, R. Cakmak, H. Ozener, F. Kadirov, I. Guliev, R. Stepanyan, M. Nadariya, G. Hahubia, S. Mahmoud, K. Sakr, A. ArRajehi, D. Paradissis, A. Al-Aydrus, M. Prilepin, T. Guseva, E. Evren, A. Dmitrotsa, S. V. Filikov, F. Gomez, R. Al-Ghazzi, and G. Karam (2006), GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, Journal of Geophysical Research: Solid Earth, 111(B5), https://doi.org/10.1029/2005JB004051.
24. Seyitoğlu, G., E. Tunçel, B. Kaypak, K. Esat, and E. Gökkaya (2022), The Anatolian Diagonal: a broad left lateral shear zone between the North Anatolian Fault Zone and the Aegean / Cyprus Arcs, Türkiye Jeoloji Bülteni / Geological Bulletin of Turkey, 65(2), 93-116, https://doi.org/10.25288/tjb.1015537.
25. Taymaz, T., H. Eyidogan, and J. Jackson (1991), Source parameters of large earthquakes in the East Anatolian Fault Zone (Turkey), Geophysical Journal International, 106(3), 537-550, https://doi.org/10.1111/j.1365-246X.1991.tb06328.x.
26. Toker, M., and Ş. Şahin (2019), Crustal Poisson’s ratio tomography and velocity modeling across tectono-magmatic lake regions of Eastern Anatolia (Turkey): New geophysical constraints for crustal tectonics, Journal of Geodynamics, 131, 101,651, https://doi.org/10.1016/j.jog.2019.101651.
27. Toker, M., and Ş. Şahin (2022), Upper- to mid-crustal seismic attenuation structure above the mantle wedge in East Anatolia, Turkey: Imaging crustal scale segmentation and differentiation, Physics of the Earth and Planetary Interiors, 329-330, 106,908, https://doi.org/10.1016/j.pepi.2022.106908.
28. Toker, M., E. Yavuz, M. Utkucu, and F. Uzunca (2023), Multiple segmentation and seismogenic evolution of the 6th February 2023 (Mw 7.8 and 7.7) consecutive earthquake ruptures and aftershock deformation in the Maras triple junction region of SE-Anatolia, Turkey, Physics of the Earth and Planetary Interiors, 345, 107,114, https://doi.org/10.1016/j.pepi.2023.107114.
29. Wei, W., D. Zhao, F. Wei, X. Bai, and J. Xu (2019), Mantle Dynamics of the Eastern Mediterranean and Middle East: Constraints From P-Wave Anisotropic Tomography, Geochemistry, Geophysics, Geosystems, 20(10), 4505-4530, https://doi.org/10.1029/2019GC008512.
30. Wu, J. C., H. W. Tang, Y. Q. Chen, and Y. X. Li (2006), The current strain distribution in the North China Basin of eastern China by least-squares collocation, Journal of Geodynamics, 41(5), 462-470, https://doi.org/10.1016/j.jog.2006.01.003.
31. Yalvac, S. (2020), Determining the Effects of the 2020 Elazığ-Sivrice/Turkey (Mw 6.7) Earthquake from the Surrounding CORS-TR GNSS Stations by means of Relative GNSS Analysis, Turkish Journal of Geosciences, 1(1), 15-21.