Meridional Oceanic and Atmospheric Heat Fluxes at the Entrance to the Atlantic Sector of the Arctic: Verification of CMIP6 Models and Climate Projections Based on the Selected Sub-Ensembles
Abstract and keywords
Abstract (English):
Poleward transports of oceanic and atmospheric heat play an essential role in the Arctic climate system, and their variations in the future will strongly shape the climate of the Arctic. The main aim of this study is to evaluate the performance of the Coupled Model Intercomparison Project phase 6 (CMIP6) models in the historical experiment in simulating the meridional heat fluxes into the Atlantic sector of the Arctic. The secondary objective is to estimate the meridional oceanic and atmospheric heat fluxes up to the end of the 21st century using the best sub-ensembles of the CMIP6 models. According to our results, the CMIP6 models poorly reproduce the interannual variability of the heat fluxes in their historical simulations, and the multi-model ensemble mean values are systematically lower than the mean values derived from the Ocean ReAnalysis System 4 (ORAS4) and European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) reanalyses. Climate projections based on the selected CMIP6 models indicate that the future Arctic climate will be characterized by the significantly increased oceanic heat transport at the entrance to the Atlantic sector of the Arctic relative to the period 1958–2014. In contrast, the atmospheric heat and moisture transport will not have dramatic differences in the projected Arctic climate relative to the period 1958–2014. Based on the results obtained, we emphasize that any interpretation of future climate simulations should be done with caution.

Keywords:
poleward heat transport, climate of the Arctic, ocean–atmosphere interaction, CMIP6 models, ORAS4 and ERA5 reanalyses, projections, North Atlantic
Text
Text (PDF): Read Download
References

1. Agosta, C., X. Fettweis, and R. Datta (2015), Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance, The Cryosphere, 9(6), 2311–2321, https://doi.org/10.5194/tc-9-2311-2015.

2. Alexeev, V. A., J. E. Walsh, V. V. Ivanov, V. A. Semenov, and A. V. Smirnov (2017), Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice, Environmental Research Letters, 12(8), 084,011, https://doi.org/10.1088/1748-9326/aa7a1d.; ; EDN: https://elibrary.ru/XNMZYC

3. Balmaseda, M. A., K. Mogensen, and A. T. Weaver (2012), Evaluation of the ECMWF ocean reanalysis system ORAS4, Quarterly Journal of the Royal Meteorological Society, 139(674), 1132–1161, https://doi.org/10.1002/qj.2063.

4. Bjerknes, J. (1964), Atlantic Air-Sea Interaction, pp. 1–82, Advances in Geophysics, Elsevier, https://doi.org/10.1016/S0065-2687(08)60005-9.

5. Boucher, O., S. Denvil, G. Levavasseur, et al. (2018), IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.5195.

6. Cao, J., and B. Wang (2019), NUIST NESMv3 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.8769.

7. Docquier, D., and T. Koenigk (2021), A review of interactions between ocean heat transport and Arctic sea ice, Environmental Research Letters, 16(12), 123,002, https://doi.org/10.1088/1748-9326/ac30be.; ; EDN: https://elibrary.ru/GOEQVL

8. EC-Earth Consortium (EC-Earth) (2019a), EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.4700.

9. EC-Earth Consortium (EC-Earth) (2019b), EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.727.

10. EC-Earth Consortium (EC-Earth) (2020), EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.4707.

11. Esau, I., L. H. Pettersson, M. Cancet, et al. (2023), The Arctic Amplification and Its Impact: A Synthesis through Satellite Observations, Remote Sensing, 15(5), 1354, https://doi.org/10.3390/rs15051354.; ; EDN: https://elibrary.ru/WVZRUX

12. Eyring, V., S. Bony, G. A. Meehl, et al. (2016), Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9(5), 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.

13. Gnatiuk, N., I. Radchenko, R. Davy, E. Morozov, and L. Bobylev (2020), Simulation of factors affecting Emiliania huxleyi blooms in Arctic and sub-Arctic seas by CMIP5 climate models: model validation and selection, Biogeosciences, 17(4), 1199–1212, https://doi.org/10.5194/bg-17-1199-2020.; ; EDN: https://elibrary.ru/QTFVRV

14. Goosse, H., J. E. Kay, K. C. Armour, et al. (2018), Quantifying climate feedbacks in polar regions, Nature Communications, 9(1), https://doi.org/10.1038/s41467-018-04173-0.; ; EDN: https://elibrary.ru/YHSZRZ

15. Graham, R. M., L. Cohen, A. A. Petty, et al. (2017), Increasing frequency and duration of Arctic winter warming events, Geophysical Research Letters, 44(13), 6974–6983, https://doi.org/10.1002/2017GL073395.; ; EDN: https://elibrary.ru/YGHVQK

16. Hersbach, H., B. Bell, P. Berrisford, et al. (2020), The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049, https://doi.org/10.1002/qj.3803.; ; EDN: https://elibrary.ru/DKXYTO

17. Hofsteenge, M. G., R. G. Graversen, J. H. Rydsaa, and Z. Rey (2022), The impact of atmospheric Rossby waves and cyclones on the Arctic sea ice variability, Climate Dynamics, 59(1–2), 579–594, https://doi.org/10.1007/s00382-022-06145-z.; ; EDN: https://elibrary.ru/KGKLAT

18. Hwang, Y.-T., D. M. W. Frierson, and J. E. Kay (2011), Coupling between Arctic feedbacks and changes in poleward energy transport, Geophysical Research Letters, 38(17), https://doi.org/10.1029/2011GL048546.

19. Jungclaus, J., M. Bittner, K.-H. Wieners, et al. (2019), MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.6594.

20. Koenigk, T., L. Brodeau, R. G. Graversen, et al. (2012), Arctic climate change in 21st century CMIP5 simulations with EC-Earth, Climate Dynamics, 40(11–12), 2719–2743, https://doi.org/10.1007/s00382-012-1505-y.; ; EDN: https://elibrary.ru/RJFHPV

21. Kravtsov, S., C. Grimm, and S. Gu (2018), Global-scale multidecadal variability missing in state-of-the-art climate models, npj Climate and Atmospheric Science, 1(1), https://doi.org/10.1038/s41612-018-0044-6.; ; EDN: https://elibrary.ru/IRSQBV

22. Latonin, M. M., I. L. Bashmachnikov, and L. P. Bobylev (2022a), Bjerknes compensation mechanism as a possible trigger of the low-frequency variability of Arctic amplification, Russian Journal of Earth Sciences, pp. 1–21, https://doi.org/10.2205/2022ES000820.; ; EDN: https://elibrary.ru/AEVFHI

23. Latonin, M. M., L. P. Bobylev, I. L. Bashmachnikov, and R. Davy (2022b), Dipole pattern of meridional atmospheric internal energy transport across the Arctic gate, Scientific Reports, 12(1), https://doi.org/10.1038/s41598-022-06371-9.; ; EDN: https://elibrary.ru/BBBQSU

24. Li, L. (2019), CAS FGOALS-g3 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.3356.

25. Liang, Y., N. P. Gillett, and A. H. Monahan (2020), Climate Model Projections of 21st Century Global Warming Constrained Using the Observed Warming Trend, Geophysical Research Letters, 47(12), https://doi.org/10.1029/2019GL086757.

26. Lique, C., H. L. Johnson, and Y. Plancherel (2017), Emergence of deep convection in the Arctic Ocean under a warming climate, Climate Dynamics, 50(9–10), 3833–3847, https://doi.org/10.1007/s00382-017-3849-9.; ; EDN: https://elibrary.ru/VDCKYY

27. Lovato, T., and D. Peano (2020), CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.3825.

28. Lovato, T., D. Peano, and M. Butenschön (2021), CMCC CMCC-ESM2 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.13195.

29. Madonna, E., and A. B. Sandø (2021), Understanding Differences in North Atlantic Poleward Ocean Heat Transport and Its Variability in Global Climate Models, Geophysical Research Letters, 49(1), https://doi.org/10.1029/2021GL096683.; ; EDN: https://elibrary.ru/BWGVFS

30. Outten, S., I. Esau, and O. H. Otterå (2018), Bjerknes Compensation in the CMIP5 Climate Models, Journal of Climate, 31(21), 8745–8760, https://doi.org/10.1175/JCLI-D-18-0058.1.

31. Overland, J. E., P. Turet, and A. H. Oort (1996), Regional Variations of Moist Static Energy Flux into the Arctic, Journal of Climate, 9(1), 54–65, https://doi.org/10.1175/1520-0442(1996)0092.0.CO;2.

32. Pan, R., Q. Shu, Q. Wang, et al. (2023), Future Arctic Climate Change in CMIP6 Strikingly Intensified by NEMO-Family Climate Models, Geophysical Research Letters, 50(4), https://doi.org/10.1029/2022GL102077.; DOI: https://doi.org/10.1029/2022gl102077; EDN: https://elibrary.ru/SCORYP

33. Polyakov, I. V., L. A. Timokhov, V. A. Alexeev, et al. (2010), Arctic Ocean Warming Contributes to Reduced Polar Ice Cap, Journal of Physical Oceanography, 40(12), 2743–2756, https://doi.org/10.1175/2010JPO4339.1.; ; EDN: https://elibrary.ru/OHMYPH

34. Riahi, K., D. P. van Vuuren, E. Kriegler, et al. (2017), The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Global Environmental Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.

35. Rong, X. (2019), CAMS CAMS_CSM1.0 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.9754.

36. Serreze, M. C., and R. G. Barry (2014), The Arctic Climate System, Cambridge University Press, https://doi.org/10.1017/CBO9781139583817.

37. Smith, D. M., J. A. Screen, C. Deser, et al. (2019), The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification, Geoscientific Model Development, 12(3), 1139–1164, https://doi.org/10.5194/gmd-12-1139-2019.; ; EDN: https://elibrary.ru/WURKZS

38. van der Swaluw, E., S. S. Drijfhout, and W. Hazeleger (2007), Bjerknes Compensation at High Northern Latitudes: The Ocean Forcing the Atmosphere, Journal of Climate, 20(24), 6023–6032, https://doi.org/10.1175/2007JCLI1562.1.

39. Volodin, E., E. Mortikov, A. Gritsun, et al. (2019a), INM INM-CM4-8 model output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.12321.

40. Volodin, E., E. Mortikov, A. Gritsun, et al. (2019b), INM INM-CM5-0 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.5070.

41. Wieners, K.-H., M. Giorgetta, J. Jungclaus, et al. (2019), MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.6595.

42. Wu, T., M. Chu, M. Dong, et al. (2018), BCC BCC-CSM2MR model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.2948.

43. Yu, Y. (2019), CAS FGOALS-f3-L model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.3355.

44. Yukimoto, S., T. Koshiro, H. Kawai, et al. (2019), MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.6842.

45. Zhang, J., R. Lindsay, M. Steele, and A. Schweiger (2008), What drove the dramatic retreat of arctic sea ice during summer 2007?, Geophysical Research Letters, 35(11), https://doi.org/10.1029/2008GL034005.

46. Ziehn, T., M. Chamberlain, A. Lenton, et al. (2019), CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.4272.

47. Årthun, M., T. Eldevik, L. H. Smedsrud, Ø. Skagseth, and R. B. Ingvaldsen (2012), Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat, Journal of Climate, 25(13), 4736–4743, https://doi.org/10.1175/JCLID-11-00466.1; DOI: https://doi.org/10.1175/JCLI-D-11-00466.1; EDN: https://elibrary.ru/RPHDXJ

Login or Create
* Forgot password?