Influence of Rock Watering on Post-Seismic Activity: A Study on the Khibiny Massif
Abstract and keywords
Abstract (English):
The article is devoted to the study of the influence of watering of the rock environment on post-seismic activity in the deposits of the Khibiny mountains. Initial data are the results of long-term monitoring of seismicity and observations of water inflows. At a qualitative level, the influence of watering of the environment on the b-value of the Gutenberg – Richter distribution of magnitudes of triggered events, as well as on the parameters of the Omori – Utsu law, which describes the post-seismic activity decay rate over time, was studied.

Keywords:
Khibiny massif, watering, post-seismic activity, Gutenberg-Richter distribution, Omori-Utsu law
Text
Publication text (PDF): Read Download
References

1. Arzamastsev, A. A., L. V. Arzamastseva, A. M. Zhirova, and V. N. Glaznev (2013), Model of formation of the KhibinyLovozero ore-bearing volcanic-plutonic complex, Geology of Ore Deposits, 55(5), 341–356, https://doi.org/10.1134/S1075701513050024.

2. Baiesi, M., and M. Paczuski (2004), Scale-free networks of earthquakes and aftershocks, Physical Review E, 69(6), 066,106, https://doi.org/10.1103/PhysRevE.69.066106.

3. Baranov, S., C. Narteau, and P. Shebalin (2022), Modeling and Prediction of Aftershock Activity, Surveys in Geophysics, 43(2), 437–481, https://doi.org/10.1007/s10712-022-09698-0.

4. Baranov, S. V., and P. N. Shebalin (2019), Global Statistics of Aftershocks Following Large Earthquakes: Independence of Times and Magnitudes, Journal of Volcanology and Seismology, 13(2), 124–130, https://doi.org/10.1134/S0742046319020027.

5. Baranov, S. V., S. A. Zhukova, P. A. Korchak, and P. N. Shebalin (2020), Productivity of Mining-Induced Seismicity, Izvestiya, Physics of the Solid Earth, 56(3), 326–336, https://doi.org/10.1134/S1069351320030015.

6. Batugin, A. S. (2006), On the Mechanism of Earthquakes of 25.04.97 and 27.04.97 in the North of Kuzbass, Gornaya Kniga, Gorny‘j informacionno-analiticheskij byulleten‘, 11, 185–189 (in Russian).

7. Bayliss, K., M. Naylor, and I. G. Main (2019), Probabilistic identification of earthquake clusters using rescaled nearest neighbour distance networks, Geophysical Journal International, 217(1), 487–503, https://doi.org/10.1093/gji/ggz034.

8. Bell, M. L., and A. Nur (1978), Strength changes due to reservoir-induced pore pressure and stresses and application to Lake Oroville, Journal of Geophysical Research: Solid Earth, 83(B9), 4469–4483, https://doi.org/10.1029/JB083iB09p04469

9. Board, M., T. Rorke, G. Williams, and N. Gay (1992), Fluid injection for rockburst control in deep mining, in 33rd U.S. Rock Mechanics/Geomechanics Symposium, pp. 111–120, A. A. Balkema, Rotterdam.

10. Cocco, M., S. Hainzl, F. Catalli, B. Enescu, A. M. Lombardi, and J. Woessner (2010), Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response, Journal of Geophysical Research: Solid Earth, 115(B5), https://doi.org/10.1029/2009jb006838

11. Dieterich, J. (1994), A constitutive law for rate of earthquake production and its application to earthquake clustering, Journal of Geophysical Research: Solid Earth, 99(B2), 2601–2618, https://doi.org/10.1029/93JB02581

12. Dieterich, J. H. (2007), Applications of Rate- and State-Dependent Friction to Models of Fault-Slip and Earthquake Occurrence, in Treatise on Geophysics (Second Edition), edited by G. Schubert, second edition ed., pp. 93–110, Elsevier, Oxford, https://doi.org/10.1016/B978-0-444-53802-4.00075-0.

13. Gimmelfarb, B. M., G. M. Virovlyansky, and A. A. Shugin (Eds.) (1965), Proceedings of the State Research Institute of Mining Chemical Raw Materials, issue 10. Khibiny Apatite Deposits. Issues of Structure, Hydrogeology and Exploration Methods, 315 pp., Nedra (in Russian).

14. Gupta, H. K. (2002), A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India, Earth-Science Reviews, 58(3–4), 279–310, https://doi.org/10.1016/S0012-8252(02)00063-6.

15. Gutenberg, B., and C. F. Richter (1944), Frequency of Earthquakes in California, Bulletin of the Seismological Society of America, 34, 185–188.

16. Hainzl, S., T. Kraft, J. Wassermann, H. Igel, and E. Schmedes (2006), Evidence for rainfall-triggered earthquake activity, Geophysical Research Letters, 33(19), https://doi.org/10.1029/2006GL027642.

17. Hainzl, S., Y. Ben-Zion, C. Cattania, and J. Wassermann (2013), Testing atmospheric and tidal earthquake triggering at Mt. Hochstaufen, Germany, Journal of Geophysical Research: Solid Earth, 118(10), 5442–5452, https://doi.org/10.1002/jgrb.50387.

18. Heinicke, J., H. Woith, C. Alexandrakis, S. Buske, and L. Telesca (2017), Can hydroseismicity explain recurring earthquake swarms in NW-Bohemia?, Geophysical Journal International, 212(1), 211–228, https://doi.org/10.1093/gji/ggx412.

19. Holschneider, M., C. Narteau, P. Shebalin, Z. Peng, and D. Schorlemmer (2012), Bayesian analysis of the modified Omori law, Journal of Geophysical Research: Solid Earth, 117(B6), https://doi.org/10.1029/2011JB009054.

20. Kartseva, T. I., V. B. Smirnov, A. V. Patonin, D. S. Sergeev, N. M. Shikhova, A. V. Ponomarev, S. M. Stroganova, and V. O. Mikhailov (2022), Initiation of Rock Fracture by Fluids of Different Viscosities, Izvestiya, Physics of the Solid Earth, 58(4), 576–590, https://doi.org/10.1134/S106935132204005X

21. Korchak, P. A., S. A. Zhukova, and P. Y. Menshikov (2014), Formation and Development of the System of Monitoring Seismic Processes in the Zone of Production Activities of JSC Apatit, Gornyi Zhurnal, pp. 42–46 (in Russian).

22. Kozyrev, A. A., S. A. Zhukova, and A. S. Batugin (2021), Influence of water content on seismic activity of rocks mass in apatite mining in Khibiny, Gornyi Zhurnal, (1), 31–36, https://doi.org/10.17580/gzh.2021.01.06.

23. Kozyrev, A. A., I. E. Semenova, S. A. Zhukova, and O. G. Zhuravleva (2022), Factors of seismic behavior change and localization of hazardous zones under a large-scale mining-induced impact, Russian Mining Industry, (6), 95–102, https://doi.org/10.30686/1609-9192-2022-6-95-102.

24. Kremenetskaya, E. O., and V. M. Trjapitsin (1995), Induced seismicity in the Khibiny Massif (Kola Peninsula), Pure and Applied Geophysics PAGEOPH, 145(1), 29–37, https://doi.org/10.1007/BF00879481.

25. Lazarevich, T. I., V. P. Mazikin, I. A. Malyi, V. A. Kovalev, A. N. Polyakov, A. S. Kharkevich, and A. N. Shabarov (2006), Geodynamic Zoning of Southern Kuzbass, 181 pp., Kemerovo (in Russian).

26. Manga, M., and C.-Y. Wang (2015), Earthquake Hydrology, in Treatise on Geophysics, 2nd edition, vol. 4, edited by G. Schubert, chap. 4.12, pp. 305–328, Elsevier, Oxford.

27. Marzocchi, W., and L. Sandri (2009), A review and new insights on the estimation of the b-valueand its uncertainty, Annals of Geophysics, 46(6), https://doi.org/10.4401/ag-3472.

28. Maystrenko, Y. P., M. Brönner, O. Olesen, T. M. Saloranta, and T. Slagstad (2020), Atmospheric Precipitation and Anomalous Upper Mantle in Relation to Intraplate Seismicity in Norway, Tectonics, 39(9), https://doi.org/10.1029/2020TC006070.

29. Mekkawi, M. (2004), A Long-Lasting Relaxation of Seismicity at Aswan Reservoir, Egypt, 1982-2001, Bulletin of the Seismological Society of America, 94(2), 479–492, https://doi.org/10.1785/0120030067.

30. Miller, S. A. (2020), Aftershocks are fluid-driven and decay rates controlled by permeability dynamics, Nature Communications, 11(1), https://doi.org/10.1038/s41467-020-19590-3.

31. Molchan, G. M., and O. E. Dmitrieva (1992), Aftershock identification: methods and new approaches, Geophysical Journal International, 109(3), 501–516, https://doi.org/10.1111/j.1365-246x.1992.tb00113.x.

32. Motorin, A., and S. Baranov (2022), Distribution of strongest aftershock magnitudes in mining-induced seismicity, Frontiers in Earth Science, 10, https://doi.org/10.3389/feart.2022.902812

33. Narteau, C., S. Byrdina, P. Shebalin, and D. Schorlemmer (2009), Common dependence on stress for the two fundamental laws of statistical seismology, Nature, 462(7273), 642–645, https://doi.org/10.1038/nature08553.

34. Nikolaev, N. I. (1988), Newest Tectonics and Geodynamics of the Lithosphere, 491 pp., Nedra, Moscow (in Russian).

35. Onokhin, F. M. (1975), Features of the Structures of the Khibiny Massif and Apatite-Nepheline Deposits, 105 pp., Nauka, Leningrad (in Russian).

36. Pisarenko, V. F., and M. V. Rodkin (2019), Declustering of Seismicity Flow: Statistical Analysis, Izvestiya, Physics of the Solid Earth, https://doi.org/10.31857/S0002-33372019538-52 (in Russian).

37. Rastogi, B. K., P. Mandal, and N. Kumar (1997), Seismicity around Dhamni Dam, Maharashtra, India, in Seismicity Associated with Mines, Reservoirs and Fluid Injections, pp. 493–509, Birkhäuser Basel, https://doi.org/10.1007/978-3-0348-8814-1_9.

38. Reasenberg, P. A., and L. M. Jones (1989), Earthquake Hazard After a Mainshock in California, Science, 243(4895), 1173–1176, https://doi.org/10.1126/science.243.4895.1173.

39. Rebetskiy, Y. L. (2007), Tectonic Tensions and Strength of Natural Massifs, 406 pp., IKC “Akademkniga”, Moscow (in Russian).

40. Shabarov, A. N., A. D. Kuranov, and V. A. Kiselev (2021), Assessing the Zones of Tectonic Fault Influence on Dynamic Rock Pressure Manifestation at Khibiny Deposits of Apatite-Nepheline Ores, Eurasian Mining, pp. 3–7, https://doi.org/10.17580/em.2021.02.01.

41. Shapiro, S. A. (2015), Fluid-Induced Seismicity, 276 pp., Cambridge University Press.

42. Sharma, S., S. Hainzl, and G. Zöller (2023), Seismicity Parameters Dependence on Main Shock-Induced Co-seismic Stress, Geophysical Journal International, 235(1), 509–517, https://doi.org/10.1093/gji/ggad201.

43. Shebalin, P., and C. Narteau (2017), Depth Dependent Stress Revealed by Aftershocks, Nature Communications, 8(1), https://doi.org/10.1038/s41467-017-01446-y

44. Shebalin, P. N., C. Narteau, and S. V. Baranov (2020), Earthquake Productivity Law, Geophysical Journal International, 222(2), 1264–1269, https://doi.org/10.1093/gji/ggaa252.

45. Simpson, D. W. (1986), Triggered Earthquakes, Annual Review of Earth and Planetary Sciences, 14(1), 21–42, https: //doi.org/10.1146/annurev.ea.14.050186.000321.

46. Smirnov, V., A. Ponomarev, P. Bernard, and S. Bourouis (2013), Field Experiment in Soultz-Sous-Forêts, 1993: Changes of the Pattern of Induced Seismicity, Acta Geophysica, 61(6), 1598–1625, https://doi.org/10.2478/s11600-013-0150-0.

47. Smirnov, V. B., and A. V. Ponomarev (2020), Physics of Transient Seismicity Regimes, 412 pp., RAS, Moscow (in Russian).

48. Smirnov, V. B., A. V. Ponomarev, P. Benard, and A. V. Patonin (2010), Regularities in Transient Modes in the Seismic Process According to the Laboratory and Natural Modeling, Izvestiya, Physics of the Solid Earth, 46(2), 104–135, https://doi.org/10.1134/S1069351310020023.

49. Smirnov, V. B., A. V. Ponomarev, S. A. Stanchits, M. G. Potanina, A. V. Patonin, G. Dresen, C. Narteau, P. Bernard, and S. M. Stroganova (2019), Laboratory Modeling of Aftershock Sequences: Stress Dependences of the Omori and Gutenberg–Richter Parameters, Izvestiya, Physics of the Solid Earth, 55(1), 124–137, https://doi.org/10.1134/S1069351319010105.

50. Smirnov, V. B., T. I. Kartseva, A. V. Ponomarev, A. V. Patonin, P. Bernard, V. O. Mikhailov, and M. G. Potanina (2020), On the Relationship between the Omori and Gutenberg–Richter Parameters in Aftershock Sequences, Izvestiya, Physics of the Solid Earth, 56(5), 605–622, https://doi.org/10.1134/S1069351320050110.

51. Smirnov, V. B., M. G. Potanina, T. I. Kartseva, A. V. Ponomarev, A. V. Patonin, V. O. Mikhailov, and D. S. Sergeev (2022), Seasonal Variations in the b-Value of the Reservoir-Triggered Seismicity in the Koyna–Warna Region, Western India, Izvestiya, Physics of the Solid Earth, 58(3), 364–378, https://doi.org/10.1134/S1069351322030077.

52. Talwani, P. (1997), On the Nature of Reservoir-induced Seismicity, Pure and Applied Geophysics, 150(3–4), 473–492, https://doi.org/10.1007/s000240050089.

53. Utsu, T., Y. Ogata, and S. R. Matsu’ura (1995), The Centenary of the Omori Formula for a Decay Law of Aftershock Activity, Journal of Physics of the Earth, 43(1), 1–33, https://doi.org/10.4294/jpe1952.43.1.

54. Vorobieva, I., P. Shebalin, and C. Narteau (2016), Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system, Geophysical Research Letters, 43(13), 6869–6875, https://doi.org/10.1002/2016GL069636

55. Vorobieva, I., P. Shebalin, and C. Narteau (2020), Condition of Occurrence of Large Man-Made Earthquakes in the Zone of Oil Production, Oklahoma, Izvestiya, Physics of the Solid Earth, 56(6), 911–919, https://doi.org/10.1134/S1069351320060130

56. Zaliapin, I., and Y. Ben-Zion (2016), A global classification and characterization of earthquake clusters, Geophysical Journal International, 207(1), 608–634, https://doi.org/10.1093/gji/ggw300.

57. Zhukova, S. (2015), The Relationship of Hydrogeological Situation and Activization of Seismic Activity on Apatite Circus Deposit and Rasvumchorr Deposit, Mining Informational and Analytical Bulletin (Scientific and Technical Journal), pp. 319–329 (in Russian).

58. Zhukova, S., A. Motorin, and S. Baranov (2023), Influence of Watering of Khibiny Mountains on the Earthquake-Size Distribution, in Problems of Geocosmos—2022, pp. 171–182, Springer International Publishing, https://doi.org/10.1007/978-3-031-40728-4_12.

59. Zoback, M. D., and H.-P. Harjes (1997), Injection-Induced Earthquakes and Crustal Stress at 9 km Depth at the KKTBDeep Drilling Site, Germany, Journal of Geophysical Research: Solid Earth, 102(B8), 18,477–18,491, https://doi.org/10.1029/96JB02814.

Login or Create
* Forgot password?