Geophysical Center of the Russian Academy of Sciences
N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Russian Federation
Russian Federation
Geophysical Survey of the Russian Academy of Sciences
Arkhangelsk, Arkhangelsk, Russian Federation
Arhangel'sk, Russian Federation
VAC 1.6 Науки о Земле и окружающей среде
UDK 550.34 Сейсмология
UDK 55 Геология. Геологические и геофизические науки
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.31 Физика Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.06.01 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI082000 Earth Sciences / Seismology & Volcanism
BISAC SCI SCIENCE
A significant increase in the number of seismic stations occurred in the Eurasian Arctic during the late 20th to early 21st century, which led to a decrease in the minimum magnitude of earthquake registration for some Arctic regions. One of the areas that have been until recently poorly studied in terms of low-magnitude seismicity includes the continent-ocean transition zone in the northern Eurasian shelf. An analysis of the monitoring performed using the seismic stations in operation in the Franz Josef Land and Severnaya Zemlya archipelagos complemented with data from the seismic stations on the Svalbard archipelago for the period from December 2011 to November 2020 made it possible to study the space-time patterns in the low magnitude seismicity at the continent-ocean transition zone. The most active features are the Franz Victoria and St. Anna grabens, and the Bely and Victoria High.
continent-ocean transition zone, continental slope, Eurasian Arctic, seismicity
1. Akimov, A. P., and S. A. Krasilov (2020), Software complex WSG "Seismic Data Processing System". Certificate of state registration of the computer program No 2020664678 dated November 16, 2020 (in Russian), EDN: IJOVUE.
2. Alekseev, M. N. (Ed.) (2004), Atlas: geology and mineral resources of the shelf of Russia, Geological Institute RAS (in Russian).
3. Antonovskaya, G. N., N. K. Kapustian, Y. V. Konechnaya, and A. V. Danilov (2020), Registration Capabilities of Russian Island-Based Seismic Stations: Case Study of the Gakkel Ridge Monitoring, Seismic Instruments, 56(1), 33–45, https://doi.org/10.3103/S0747923920010028.
4. Asming, V. E., A. V. Fedorov, A. N. Vinogradov, et al. (2016), The System of Automatic Seismological Monitoring of the Nort-West Russia and the Western Arctica, in Moderm Methods of Processing and Interpretation of Seismological Data. Proc. XI International Seismological Workshop. Kyrgyzstan, September 12-16, pp. 34–36, GS RAS, Obninsk (in Russian).
5. Avetisov, G. P. (1996), Seismically active zones of the Arctic, VNIIOkeangeologiya, St. Petersburg (in Russian).
6. Engen, Ø., O. Eldholm, and H. Bungum (2003), The Arctic plate boundary, Journal of Geophysical Research: Solid Earth, 108(B2), https://doi.org/10.1029/2002JB001809.
7. FDSN (2024), Arkhangelsk Seismic Network, https://www.fdsn.org/networks/, https://doi.org/10.7914/SN/AH, (visited on 07/31/2024).
8. Fedorov, A. V., V. E. Asming, Z. A. Jevtjugina, and A. V. Prokudina (2019), Automated Seismic Monitoring System for the European Arctic, Seismic Instruments, 55(1), 17–23, https://doi.org/10.3103/S0747923919010067.
9. Gabsatarova, I. P. (2006), Introduction into routine practice divisions of the Geophysical Survey of RAS calculation procedure of the local magnitude, in MODERN METHODS OF PROCESSINGAND INTERPRETATION OF SEISMOLOGICAL DATA. Materials from International seismological school dedicated to 100-annivesary foundation of seismic stations "Pulkovo" and "Ekaterinburg", pp. 49–53, GS RAS, Obninsk (in Russian).
10. GFZ German Research Center for Geosciences (2021), GEOFON, http://geofon.gfz-potsdam.de/geofon, (visited on 07/31/2024).
11. Gibbons, S. J., D. B. Harris, T. Dahl-Jensen, et al. (2017), Locating seismicity on the Arctic plate boundary using multiple-event techniques and empirical signal processing, Geophysical Journal International, 211(3), 1613–1627, https://doi.org/10.1093/gji/ggx398.
12. Harboe, E. G. (1911), Das Erdbebenobservatorium auf der Disko-Insel, Gerlands Beiträge zur Geophysik.
13. Havskov, J., P. Bormann, and J. Schweitzer (2002), Earthquake location, in New Manual of Seismological Observatory Practice (NMSOP), Deutsches GeoForschungsZentrum GFZ.
14. Hjelstuen, B. O., O. Eldholm, and J. I. Faleide (2007), Recurrent Pleistocene mega-failures on the SW Barents Sea margin, Earth and Planetary Science Letters, 258(3–4), 605–618, https://doi.org/10.1016/j.epsl.2007.04.025.
15. International Seismological Centre (2024), Searching the ISC Bulletin, https://doi.org/10.31905/D808B830, (visited on 07/31/2024).
16. Khutorskoi, M. D., Y. G. Leonov, A. V. Ermakov, and V. R. Akhmedzyanov (2009), Abnormal heat flow and the trough’s nature in the Northern Svalbard plate, Doklady Earth Sciences, 424(1), 29–35, https://doi.org/10.1134/S1028334X09010073.
17. Kremenetskaya, E., and V. Asming (2002), Problems of regional seismic event location and depth estimation in the European Arctic, Workshop on IMS Location Calibration and Screening, 4 (in Russian).
18. Kulhánek, O. (1988), The status, importance, and use of historical seismograms in Sweden, in Symposium on historical seismograms and earthquakes, pp. 64–69, Academic Press.
19. Kværna, T., and F. Ringdal (1996), Generalized Beamforming, Phase Association and Threshold Monitoring using a Global Seismic Network, in Monitoring a Comprehensive Test Ban Treaty, pp. 447–466, Springer Netherlands, https://doi.org/10.1007/978-94-011-0419-7_24.
20. Morozov, A. N., and N. V. Vaganova (2017), The travel times of regional P and S for spreading ridges in the European Arctic, Journal of Volcanology and Seismology, 11(2), 156–163, https://doi.org/10.1134/S0742046317020051.
21. Morozov, A. N., N. V. Vaganova, Y. V. Konechnaya, and V. E. Asming (2014), New data about seismicity and crustal velocity structure of the "continent-ocean" transition zone of the Barents-Kara region in the Arctic, Journal of Seismology, 19(1), 219–230, https://doi.org/10.1007/s10950-014-9462-z.
22. Morozov, A. N., N. V. Vaganova, E. V. Ivanova, et al. (2016), New data about small-magnitude earthquakes of the ultraslowspreading Gakkel Ridge, Arctic Ocean, Journal of Geodynamics, 93, 31–41, https://doi.org/10.1016/j.jog.2015.11.002.
23. Morozov, A. N., N. V. Vaganova, V. E. Asming, Y. V. Konechnaya, and Z. A. Evtyugina (2018), The instrumental seismicity of the Barents and Kara sea region: relocated event catalog from early twentieth century to 1989, Journal of Seismology, 22(5), 1171–1209, https://doi.org/10.1007/s10950-018-9760-y.
24. Morozov, A. N., N. V. Vaganova, and Y. V. Konechnaya (2019), The October 14, 1908 MW 6.6 earthquake in the Barents and Kara sea region of the Arctic: Relocation based on instrumental data, Polar Science, 20, 160–166, https://doi.org/10.1016/j.polar.2019.05.001.
25. Panasenko, G. D. (1986), Problems of seismic zoning of the Western sector of the Soviet Arctic, in Nature and economy of the North, vol. 14, pp. 4–6, AS USSR, Geographical Society of the USSR, Northern Branch (in Russian).
26. Peterson, J. R. (1993), Observations and modeling of seismic background noise, US Geological Survey, https://doi.org/10.3133/ofr93322.
27. Rempp, G. (1914), Aufstellung und Betrieb eines Seismographen auf der Deutschen Geophysikalischen Station Adventbai (Spitzbergen) 1911/12, Gerlands Beiträge zur Geophysik.
28. Rogozhin, E. A., G. N. Antonovskaya, N. K. Kapustian, and I. V. Fedorenko (2016), Features of seismicity of the Euro-Arctic region, Doklady Earth Sciences, 467(2), 389–392, https://doi.org/10.1134/S1028334X16040140.
29. Schweitzer, J., B. Paulsen, G. N. Antonovskaya, et al. (2021), A 24-Yr-Long Seismic Bulletin for the European Arctic, Seismological Research Letters, 92(5), 2758–2767, https://doi.org/10.1785/0220210018.
30. Vanneste, M., J. Mienert, and S. Bunz (2006), The Hinlopen Slide: A giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean, Earth and Planetary Science Letters, 245(1–2), 373–388, https://doi.org/10.1016/j.epsl.2006.02.045.
31. Vinogradov, A., and S. Baranov (2013), The possible impact of landslide processes on the seismicity of the North-Western part of the Barents sea, in Modern methods of processing and interpretation of seismological data. Materials of the Eighth International Seismological Workshop, pp. 99–103, GS RAS, Obninsk.
32. Winkelmann, D., and R. Stein (2007), Triggering of the Hinlopen/Yermak Megaslide in relation to paleoceanography and climate history of the continental margin north of Spitsbergen, Geochemistry, Geophysics, Geosystems, 8(6), https://doi.org/10.1029/2006GC001485.
33. Zaionchek, A., H. Brekke, S. Y. Sokolov, et al. (2010), The structure of the transition zone continent-ocean north-western periphery of the Barents Sea (according to 24, 25 and 26 flights vessel "Akademik Nikolai Strakhov" 2006-2009), in The structure and evolution of the lithosphere, pp. 111–157, Paulsen (in Russian).