A Closer Cooperation between Space and Seismology Communities – a Way to Avoid Errors in Hunting for Earthquake Precursors
Abstract and keywords
Abstract (English):
The space physicists and the earthquake (EQ) prediction community exploit the same instruments – magnetometers, but for different tasks: space physicists try to comprehend the global electrodynamics of near-Earth space on various time scales, whereas the seismic community develops electromagnetic methods of short-term EQ prediction. The lack of deep collaboration between those communities may result sometimes in erroneous conclusions. In this critical review, we demonstrate some incorrect results caused by a neglect of specifics of geomagnetic field evolution during space weather activation. The considered examples comprise: Magnetic storms as a trigger of EQs; ULF waves as a global EQ precursor; Geomagnetic impulses before seismic shocks; Long-period geomagnetic disturbances generated by strong EQs; Discrimination of underground ULF sources by amplitude-phase gradients; Depression of ULF power as a short-term EQ precursor; and Detection of seimogenic emissions by satellites. To verify the reliability of the above widely disseminated results data from available arrays of fluxgate and search-coil magnetometers have been re-analyzed. In all considered events, the “anomalous” geomagnetic field behavior can be explained by global geomagnetic activity, and it is apparently not associated with seismic activity. This critical review does not claim that ULF electromagnetic field cannot be used as a sensitive indicator of the EQ preparation processes, but we suggest that both communities must cooperate their studies more tightly using data exchange, combined usage of magnetometer networks, organization of CDAW for unique events, etc.

Keywords:
seismo-electromagnetic phenomena, earthquake prediction, geomagnetic pulsations
Text
Publication text (PDF): Read Download
References

1. Adushkin, V. V., and A. A. Spivak (2021), Impact of Natural Extreme Events on Geophysical Fields in the Environment, Izvestiya, Physics of the Solid Earth, 57(5), 583–592, https://doi.org/10.1134/s1069351321050037.

2. Adushkin, V. V., S. A. Ryabova, A. A. Spivak, and V. A. Kharlamov (2012), Response of the seismic background to geomagnetic variations, Doklady Earth Sciences, 444(1), 642–646, https://doi.org/10.1134/s1028334x12050157.

3. Akhoondzadeh, M. (2013), Novelty detection in time series of ULF magnetic and electric components obtained from DEMETER satellite experiments above Samoa (29 September 2009) earthquake region, Natural Hazards and Earth System Sciences, 13(1), 15–25, https://doi.org/10.5194/nhess-13-15-2013.

4. Bakhmutov, V. G., F. I. Sedova, and T. A. Mozgova (2003), Morphological analysis of geomagnetic variations in preparation period of the strongest earthquake of 25 March 1998, Ukrainian Antarctic Journal, (1), 54–60, https://doi.org/10.33275/1727-7485.1.2003.624 (in Ukranian).

5. Best, A., S. M. Krylov, I. P. Kurchashov, I. S. Nikomarov, and V. A. Pilipenko (1986), Gradient-time analysis of Pc3 pulsations, Geomagnetism and Aeronomy, 26(6), 980–984 (in Russian).

6. Bilichenko, S. V., A. S. Inchin, E. F. Kim, O. A. Pokhotelov, P. P. Puschaev, G. G. Stanev, A. V. Streltsov, and V. M. Chmyrev (1990), ULF response of the ionosphere to earthquake preparation processes, Doklady Akademii Nauk, 311(5), 1077–1081 (in Russian).

7. Bleier, T., C. Dunson, M. Maniscalco, N. Bryant, R. Bambery, and F. Freund (2009), Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5.4 earthquake, Natural Hazards and Earth System Sciences, 9(2), 585–603, https://doi.org/10.5194/nhess-9-585-2009.

8. Bleier, T., C. Dunson, C. Alvarez, F. Freund, and R. Dahlgren (2010), Correlation of pre-earthquake electromagnetic signals with laboratory and field rock experiments, Natural Hazards and Earth System Sciences, 10(9), 1965–1975, https://doi.org/10.5194/nhess-10-1965-2010

9. Bortnik, J., J. W. Cutler, C. Dunson, and T. E. Bleier (2008), The possible statistical relation of Pc1 pulsations to Earthquake occurrence at low latitudes, Annales Geophysicae, 26(9), 2825–2836, https://doi.org/10.5194/angeo-26-2825-2008.

10. Chernogor, L. F. (2019), Geomagnetic Disturbances Accompanying the Great Japanese Earthquake of March 11, 2011, Geomagnetism and Aeronomy, 59(1), 62–75, https://doi.org/10.1134/S0016793219010043

11. Chmyrev, V. M., N. V. Isaev, S. V. Bilichenko, and G. Stanev (1986), Electric fields and hydromagnetic waves in the ionosphere above the earthquake source, Geomagnetism and Aeronomy, 26(6), 1020–1022 (in Russian).

12. Chmyrev, V. M., N. V. Isaev, S. V. Bilichenko, and G. Stanev (1989), Observation by space-borne detectors of electric fields and hydromagnetic waves in the ionosphere over an earthquake centre, Physics of the Earth and Planetary Interiors, 57(1–2), 110–114, https://doi.org/10.1016/0031-9201(89)90220-3.

13. De Santis, A., G. De Franceschi, L. Spogli, L. Perrone, L. Alfonsi, and other (2015), Geospace perturbations induced by the Earth: The state of the art and future trends, Physics and Chemistry of the Earth, Parts A/B/C, 85–86, 17–33, https://doi.org/10.1016/j.pce.2015.05.004.

14. De Santis, A., D. Marchetti, F. J. Pavón-Carrasco, G. Cianchini, L. Perrone, and other (2019), Precursory worldwide signatures of earthquake occurrences on Swarm satellite data, Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-56599-1

15. Desherevskii, A. V., and A. Y. Sidorin (2016), Comparative morphological analysis of the diurnal rhythms in geomagnetic and seismic activity, Izvestiya, Atmospheric and Oceanic Physics, 52(8), 853–861, https://doi.org/10.1134/s0001433816080041.

16. Doda, L. N., V. L. Natyaganov, and I. V. Stepanov (2013), An empirical scheme of short-term earthquake prediction, Doklady Earth Sciences, 453(2), 1257–1263, https://doi.org/10.1134/S1028334X1312009X.

17. Dovbnya, B. V. (2011), On the effects of earthquakes in geomagnetic pulsations and their possible nature, Geophysical Journal, 33(1), 72–79 (in Russian).

18. Dovbnya, B. V. (2014), Electromagnetic precursors of earthquakes and their frequency, Geophysical Journal, 36(3), 160–165 (in Russian).

19. Dovbnya, B. V. (2021), On the results of remote observation of pulsed ultra-low-frequency electromagnetic signals detected minutes before an earthquake, Life of the Earth, 43(3), 304–313, https://doi.org/10.29003/m2435.0514-7468.2020_43_3/304-313 (in Russian).

20. Dovbnya, B. V., O. D. Zotov, A. O. Mostryukov, and R. V. Shchepetnov (2006), Electromagnetic signals close in time to earthquakes, Izvestiya, Physics of the Solid Earth, 42(8), 684–689, https://doi.org/10.1134/s1069351306080052.

21. Dovbnya, B. V., O. D. Zotov, and R. V. Shchepetnov (2008), Connection of ULF electromagnetic waves with earthquakes and anthropogenic impacts, Izvestiya, Physics of the Solid Earth, 9, 3–23 (in Russian).

22. Dovbnya, B. V., A. Y. Pashinin, and R. A. Rakhmatulin (2019), Short-term electromagnetic precursors of earthquakes, Geodynamics & Tectonophysics, 10(3), 731–740, https://doi.org/10.5800/GT-2019-10-3-0438.

23. Duma, G., and Y. Ruzhin (2003), Diurnal changes of earthquake activity and geomagnetic Sq-variations, Natural Hazards and Earth System Sciences, 3(3/4), 171–177, https://doi.org/10.5194/nhess-3-171-2003.

24. Duma, G., and G. Vilardo (1998), Seismicity cycles in the Mt. Vesuvius area and their relation to solar flux and the variations of the Earth’s magnetic field, Physics and Chemistry of the Earth, 23(9–10), 927–931, https://doi.org/10.1016/s0079-1946(98)00121-9.

25. Fedorov, E., V. Pilipenko, and S. Uyeda (2001), Electric and magnetic fields generated by electrokinetic processes in a conductive crust, Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 26(10–12), 793–799, https://doi.org/10.1016/S1464-1917(01)95027-5.

26. Fedorov, E. N., N. G. Mazur, V. A. Pilipenko, and V. V. Vakhnina (2023), Generation of Artificial ULF/ELF Electromagnetic Emission in the Ionosphere by Horizontal Ground-Based Current System, Journal of Geophysical Research: Space Physics, 128(12), https://doi.org/10.1029/2023ja031590.

27. Fenoglio, M. A., M. J. S. Johnston, and J. D. Byerlee (1995), Magnetic and electric fields associated with changes in high pore pressure in fault zones: Application to the Loma Prieta ULF emissions, Journal of Geophysical Research: Solid Earth, 100(B7), 12,951–12,958, https://doi.org/10.1029/95JB00076

28. Freund, F. T., J. A. Heraud, V. A. Centa, and J. Scoville (2021), Mechanism of unipolar electromagnetic pulses emitted from the hypocenters of impending earthquakes, The European Physical Journal Special Topics, 230(1), 47–65, https://doi.org/10.1140/epjst/e2020-000244-4.

29. Gavrilov, B. G., Y. V. Poklad, I. A. Ryakhovsky, V. M. Ermak, N. S. Achkasov, and E. N. Kozakova (2022), Global Electromagnetic Disturbances Caused by the Eruption of the Tonga Volcano on 15 January 2022, Journal of Geophysical Research: Atmospheres, 127(23), https://doi.org/10.1029/2022jd037411.

30. Gogatishvili, I. M. (1984), Geomagnetic precursors of intense earthquakes in the spectrum of geomagnetic pulsations with frequencies of 1-0.02 Hz, Geomagnetism and Aeronomy, 24, 697–700 (in Russian).

31. Gousheva, M., D. Danov, P. Hristov, and M. Matova (2008), Quasi-static electric fields phenomena in the ionosphere associated with pre- and post earthquake effects, Natural Hazards and Earth System Sciences, 8(1), 101–107, https://doi.org/10.5194/nhess-8-101-2008.

32. Guglielmi, A. V., and V. T. Levshenko (1996), Electromagnetic impulse from the source of an earthquake, Doklady Akademii Nauk, 349(5), 676–678 (in Russian).

33. Guglielmi, A. V., and O. D. Zotov (2010), Correlation between Pc1 electromagnetic activity and earthquakes, Izvestiya, Physics of the Solid Earth, 46(6), 486–492, https://doi.org/10.1134/S1069351310060030.

34. Han, Y., Z. Guo, J. Wu, and L. Ma (2004), Possible triggering of solar activity to big earthquakes (Ms ≥ 8) in faults with near west-east strike in China, Science in China Series G, 47(2), 173, https://doi.org/10.1360/03yw0103.

35. Harrison, R. G., K. L. Aplin, and M. J. Rycroft (2010), Atmospheric electricity coupling between earthquake regions and the ionosphere, Journal of Atmospheric and Solar-Terrestrial Physics, 72(5–6), 376–381, https://doi.org/10.1016/j.jastp.2009.12.004.

36. Hattori, K. (2004), ULF Geomagnetic Changes Associated with Large Earthquakes, Terrestrial, Atmospheric and Oceanic Sciences, 15(3), 329, https://doi.org/10.3319/TAO.2004.15.3.329(EP).

37. Hayakawa, M. (Ed.) (2009), Electromagnetic phenomena associated with earthquakes, Transworld Research Network, Trivandrum (India).

38. Hayakawa, M. (Ed.) (2013), Earthquake Prediction Studies: Seismo Electromagnetics, TERRAPUB, Tokyo.

39. Hayakawa, M., and O. A. Molchanov (Eds.) (2002), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo.

40. Hayakawa, M., R. Kawate, O. A. Molchanov, and K. Yumoto (1996), Results of ultra-low-frequency magnetic field measurements during the Guam Earthquake of 8 August 1993, Geophysical Research Letters, 23(3), 241–244, https://doi.org/10.1029/95GL02863.

41. Hayakawa, M., T. Ito, and N. Smirnova (1999), Fractal analysis of ULF geomagnetic data associated with the Guam Earthquake on August 8, 1993, Geophysical Research Letters, 26(18), 2797–2800, https://doi.org/10.1029/1999GL005367.

42. Hayakawa, M., A. Schekotov, S. Potirakis, and K. Eftaxias (2015), Criticality features in ULF magnetic fields prior to the 2011 Tohoku earthquake, Proceedings of the Japan Academy, Series B, 91(1), 25–30, https://doi.org/10.2183/pjab.91.25.

43. Huang, Q., P. Han, K. Hattori, and H. Ren (2020), Electromagnetic Signals Associated With Earthquakes: A Review of Observations, Data Processing, and Mechanisms in China, https://doi.org/10.1002/9781119127383.ch26.

44. Ismaguilov, V. S., Y. A. Kopytenko, K. Hattori, and M. Hayakawa (2003), Variations of phase velocity and gradient values of ULF geomagnetic disturbances connected with the Izu strong earthquakes, Natural Hazards and Earth System Sciences, 3(3/4), 211–215, https://doi.org/10.5194/nhess-3-211-2003.

45. Ismaguilov, V. S., Y. A. Kopytenko, K. Hattori, and M. Hayakawa (2006), Gradients and phase velocities of ULF geomagnetic disturbances used to determine the source of an impending strong earthquake, Geomagnetism and Aeronomy, 46(3), 403–410, https://doi.org/10.1134/S0016793206030157.

46. Iyemori, T., T. Kamei, Y. Tanaka, M. Takeda, T. Hashimoto, T. Araki, T. Okamoto, K. Watanabe, N. Sumitomo, and N. Oshiman (1996), Co-Seismic Geomagnetic Variations Observed at the 1995 Hyogoken-Nanbu Earthquake, Journal of geomagnetism and geoelectricity, 48(8), 1059–1070, https://doi.org/10.5636/jgg.48.1059.

47. Iyemori, T., M. Nose, D. Han, Y. Gao, M. Hashizume, and other (2005), Geomagnetic pulsations caused by the Sumatra earthquake on December 26, 2004, Geophysical Research Letters, 32(20), https://doi.org/10.1029/2005GL024083.

48. Kappler, K. N., D. D. Schneider, L. S. MacLean, and T. E. Bleier (2017), Identification and classification of transient pulses observed in magnetometer array data by time-domain principal component analysis filtering, Earthquake Science, 30(4), 193–207, https://doi.org/10.1007/s11589-017-0191-6.

49. Kappler, K. N., D. D. Schneider, L. S. MacLean, T. E. Bleier, and J. J. Lemon (2019), An algorithmic framework for investigating the temporal relationship of magnetic field pulses and earthquakes applied to California, Computers & Geosciences, 133, 104,317, https://doi.org/10.1016/j.cageo.2019.104317.

50. Kodama, T., O. A. Molchanov, and M. Hayakawa (2000), NASDA Earthquake Remote Sensing Frontier Research — Feasibility of satellite observation of seismoelectromagnetics, Advances in Space Research, 26(8), 1281–1284, https://doi.org/10.1016/S0273-1177(99)01219-3.

51. Kopytenko, Y. A., V. S. Ismaguilov, O. A. Molchanov, E. A. Kopytenko, P. M. Voronov, K. Hattori, M. Hayakawa, and D. B. Zaitsev (2002), Investigation of ULF magnetic disturbances in Japan during seismic active period, Journal of Atmospheric Electricity, 22(3), 207–215.

52. Kopytenko, Y. A., V. S. Ismaguilov, K. Hattori, and M. Hayakawa (2006), Determination of hearth position of a forthcoming strong EQ using gradients and phase velocities of ULF geomagnetic disturbances, Physics and Chemistry of the Earth, Parts A/B/C, 31(4–9), 292–298, https://doi.org/10.1016/j.pce.2006.02.004.

53. Kopytenko, Y. A., V. S. Ismaguilov, K. Hattori, and M. Hayakawa (2012), Anomaly disturbances of the magnetic fields before the strong earthquake in Japan on March 11, 2011, Annals of Geophysics, 55(1), https://doi.org/10.4401/ag-5260.

54. Kosterin, N. A., V. A. Pilipenko, and E. M. Dmitriev (2015), On Global Ultralow Frequency Electromagnetic Signals Prior to Earthquakes, Geophysical research, 16(1), 24–34 (in Russian).

55. Kozyreva, O. V., and V. A. Pilipenko (2020), On the Relationship of Geomagnetic Disturbances and Seismic Activity for Alaska Region, Geophysical research, 21(1), 33–49, https://doi.org/10.21455/gr2020.1-3 (in Russian).

56. Kozyreva, O. V., V. A. Pilipenko, E. E. Marshalko, E. Y. Sokolova, and M. N. Dobrovolsky (2022), Monitoring of Geomagnetic and Telluric Field Disturbances in the Russian Arctic, Applied Sciences, 12(8), 3755, https://doi.org/10.3390/app12083755.

57. Kuznetsova, V. G., V. E. Maksimchuk, Y. M. Gorodysky, and T. A. Klimkovich (2005), Anomalous Effects in the Geomagnetic Field in Relation to the Seismic Regime of the Carpathians, Izvestiya, Physics of the Solid Earth, 41(3), 213–237.

58. Li, Q., A. Schekotov, T. Asano, and M. Hayakawa (2015), On the Anomalies in ULF Magnetic Field Variations Prior to the 2008 Sichuan Earthquake, Open Journal of Earthquake Research, 04(02), 55–64, https://doi.org/10.4236/ojer.2015.42005.

59. Lockner, D. A., M. J. S. Johnston, and J. D. Byerlee (1983), A mechanism to explain the generation of earthquake lights, Nature, 302(5903), 28–33, https://doi.org/10.1038/302028a0.

60. Love, J. J., and A. Chulliat (2013), An International Network of Magnetic Observatories, EOS, Transactions American Geophysical Union, 94(42), 373–374, https://doi.org/10.1002/2013EO420001

61. Love, J. J., and J. N. Thomas (2013), Insignificant solar-terrestrial triggering of earthquakes, Geophysical Research Letters, 40(6), 1165–1170, https://doi.org/10.1002/grl.50211.

62. Marchuk, R., A. Potapov, and V. Mishin (2022), Synchronous globally observable ultrashort-period pulses, SolnechnoZemnaya Fizika, 8(2), 52–60, https://doi.org/10.12737/szf-82202207.

63. Martinez-Bedenko, V. A., V. A. Pilipenko, K. Shiokawa, and V. A. Kasimova (2023), Search for Pulsed Ultralow-Frequency Electromagnetic Earthquake Precursors, Geophysical Research, 24(2), 5–24, https://doi.org/10.21455/gr2023.2-1 (in Russian).

64. Masci, F., and J. N. Thomas (2015), Are there new findings in the search for ULF magnetic precursors to earthquakes?, Journal of Geophysical Research: Space Physics, 120(12), https://doi.org/10.1002/2015ja021336.

65. Mazur, N. G., E. N. Fedorov, V. A. Pilipenko, and K. E. Borovleva (2024), Electromagnetic ULF fields on the earth’s surface and in the ionosphere from an underground seismic source, Izvestiya, Physics of the Solid Earth, (2).

66. Menk, F. W., and C. L. Waters (2013), Magnetoseismology: Ground-Based Remote Sensing of Earth’s Magnetosphere, Wiley, https://doi.org/10.1002/9783527652051.

67. Molchanov, O. A., and M. Hayakawa (1995), Generation of ULF electromagnetic emissions by microfracturing, Geophysical Research Letters, 22(22), 3091–3094, https://doi.org/10.1029/95gl00781.

68. Molchanov, O. A., Y. A. Kopytenko, P. M. Voronov, E. A. Kopytenko, and other (1992), Results of ULF magnetic field measurements near the epicenters of the Spitak (Ms = 6.9) and Loma Prieta (Ms = 7.1) earthquakes: Comparative analysis, Geophysical Research Letters, 19(14), 1495–1498, https://doi.org/10.1029/92gl01152.

69. Molchanov, O. A., M. Hayakawa, and V. A. Rafalsky (1995), Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere, and magnetosphere, Journal of Geophysical Research: Space Physics, 100(A2), 1691–1712, https://doi.org/10.1029/94ja02524.

70. Molchanov, O. A., A. Y. Schekotov, E. Fedorov, G. G. Belyaev, M. S. Solovieva, and M. Hayakawa (2004), Preseismic ULF effectand possible interpretation, Annals of Geophysics, 47(1), https://doi.org/10.4401/ag-3265.

71. Naumov, A. P. (1999), Impulsive low-frequency seismo-magnetic signals in geomagnetic variations as an earthquake prediction tool, Volcanology & Seismology, 20, 743–752.

72. Nosikova, N. S., V. A. Pilipenko, and S. L. Shalimov (2023), On the Magnetic Effects Caused by the Earthquake of March 16, 2022 in Japan, Izvestiya, Physics of the Solid Earth, 59(5), 815–820, https://doi.org/10.1134/S1069351323050075.

73. Odintsov, S., K. Boyarchuk, K. Georgieva, B. Kirov, and D. Atanasov (2006), Long-period trends in global seismic and geomagnetic activity and their relation to solar activity, Physics and Chemistry of the Earth, Parts A/B/C, 31(1–3), 88–93, https://doi.org/10.1016/j.pce.2005.03.004.

74. Ouyang, X. Y., M. Parrot, and J. Bortnik (2020), ULF Wave Activity Observed in the Nighttime Ionosphere Above and Some Hours Before Strong Earthquakes, Journal of Geophysical Research: Space Physics, 125(9), https://doi.org/10.1029/2020JA028396.

75. Parrot, M., and M. Lil (2015), DEMETER results related to seismic activity, Radio Science Bulletin, 355, 18–25, https://doi.org/10.23919/URSIRSB.2015.7909470

76. Petraki, E., D. Nikolopoulos, C. Nomicos, J. Stonham, and other (2015), Electromagnetic Pre-earthquake Precursors: Mechanisms, Data and Models-A Review, Journal of Earth Science & Climatic Change, 06(01), https://doi.org/10.4172/2157-7617.1000250.

77. Picozza, P., L. Conti, and A. Sotgiu (2021), Looking for Earthquake Precursors From Space: A Critical Review, Frontiers in Earth Science, 9, https://doi.org/10.3389/feart.2021.676775.

78. Pilipenko, V., O. Kozyreva, E. Fedorov, M. Uspensky, and K. Kauristie (2016), Latitudinal amplitude-phase structure of MHD waves: STARE radar and image magnetometer observations and modeling, Solnechno-Zemnaya Fizika, 2(3), 41–51, https://doi.org/10.12737/19418.

79. Pulinets, S., and D. Davidenko (2014), Ionospheric precursors of earthquakes and Global Electric Circuit, Advances in Space Research, 53(5), 709–723, https://doi.org/10.1016/j.asr.2013.12.035.

80. Rabeh, T., M. Miranda, and M. Hvozdara (2009), Strong earthquakes associated with high amplitude daily geomagnetic variations, Natural Hazards, 53(3), 561–574, https://doi.org/10.1007/s11069-009-9449-1.

81. Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. J. Humphreys, and P. A. Johnson (2017), Machine Learning Predicts Laboratory Earthquakes, Geophysical Research Letters, 44(18), 9276–9282, https://doi.org/10.1002/2017GL074677.

82. Schekotov, A. Y., and M. Hayakawa (2017), ULF/ELF electromagnetic phenomena for short-term earthquake prediction, LAP LAMBERT Academic Publishing.

83. Schekotov, A. Y., O. A. Molchanov, K. Hattori, E. N. Fedorov, and other (2006), Seismo-ionospheric depression of the ULF geomagnetic fluctuations at Kamchatka and Japan, Physics and Chemistry of the Earth, Parts A/B/C, 31(4–9), 313–318, https://doi.org/10.1016/j.pce.2006.02.043.

84. Schekotov, A. Y., O. A. Molchanov, M. Hayakawa, E. N. Fedorov, V. N. Chebrov, and other (2008), About possibility to locate an EQ epicenter using parameters of ELF/ULF preseismic emission, Natural Hazards and Earth System Sciences, 8(6), 1237–1242, https://doi.org/10.5194/nhess-8-1237-2008.

85. Schekotov, A. Y., E. N. Fedorov, Y. Hobara, and M. Hayakawa (2013), ULF Magnetic Field Depression as a Possible Precursor to the 2011/3.11 Japan Earthquake, Journal of Atmospheric Electricity, 33(1), 41–51, https://doi.org/10.1541/jae.33.41.

86. Schekotov, A. Y., D. Chebrov, M. Hayakawa, G. Belyaev, and N. Berseneva (2020), Short-term earthquake prediction in Kamchatka using low-frequency magnetic fields, Natural Hazards, 100(2), 735–755, https://doi.org/10.1007/s11069-019-03839-2.

87. Serita, A., K. Hattori, C. Yoshino, M. Hayakawa, and N. Isezaki (2005), Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes, Natural Hazards and Earth System Sciences, 5(5), 685–689, https://doi.org/10.5194/nhess-5-685-2005

88. Sgrigna, V., A. Buzzi, L. Conti, P. Picozza, C. Stagni, and D. Zilpimiani (2008), The ESPERIA satellite project for detecting seismo-associated effects in the topside ionosphere. First instrumental tests in space, Earth, Planets and Space, 60(5), 463–475, https://doi.org/10.1186/BF03352813.

89. Shiokawa, K., Y. Katoh, Y. Hamaguchi, Y. Yamamoto, T. Adachi, and other (2017), Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network, Earth, Planets and Space, 69(1), https://doi.org/10.1186/s40623-017-0745-9

90. Simpson, J. F. (1967), Solar activity as a triggering mechanism for earthquakes, Earth and Planetary Science Letters, 3, 417–425, https://doi.org/10.1016/0012-821X(67)90071-4.

91. Smirnov, V. B., and A. D. Zavyalov (2012), Seismic response to electromagnetic sounding of the Earth’s lithosphere, Izvestiya, Physics of the Solid Earth, 48(7–8), 615–639, https://doi.org/10.1134/S1069351312070075

92. Sobisevich, A. L., K. K. Kanonidi, L. E. Sobisevich, and D. G. Gridnev (2009a), On a class of electromagnetic disturbances preceding strong earthquakes, Seismic Instruments, 46(3), 228–233, https://doi.org/10.3103/s0747923910030047.

93. Sobisevich, A. L., L. E. Sobisevich, K. K. Kanonidi, and D. V. Likhodeev (2017), Gravimagnetic perturbations preceding earthquakes, Doklady Earth Sciences, 475(2), 891–894, https://doi.org/10.1134/s1028334x17080086.

94. Sobisevich, L. E. (2020), Seismogravitational processes and gravitomagnetic disturbances accompanying geophysical catastrophes, Geofizika, 1, 70–76 (in Russian).

95. Sobisevich, L. E., K. K. Kanonidi, and A. L. Sobisevich (2009b), Ultra low-frequency electromagnetic disturbances appearing before strong seismic events, Doklady Earth Sciences, 429(2), 1549–1552, https://doi.org/10.1134/s1028334x09090281.

96. Sobisevich, L. E., K. K. Kanonidi, and A. L. Sobisevich (2010a), Observations of ultra-low-frequency geomagnetic disturbances reflecting the processes of the preparation and development of tsunamigenic earthquakes, Doklady Earth Sciences, 435(2), 1627–1632, https://doi.org/10.1134/S1028334X10120160.

97. Sobisevich, L. E., K. K. Kanonidi, and A. L. Sobisevich (2010b), Ultra low-frequency electromagnetic variation observed prior to development of an earthquake followed by tsunami, Geophysical Journal, 32(4), 152–157.

98. Sobisevich, L. E., A. L. Sobisevich, and K. K. Kanonidi (2012), Anomalous geomagnetic disturbances induced by catastrophic tsunamigenic earthquakes in the region of Indonesia, Geophysical Journal, 34(5), 22–37, https://doi.org/10.24028/gzh.0203-3100.v34i5.2012.116661.

99. Sobisevich, L. E., K. K. Kanonidi, A. L. Sobisevich, and O. I. Miseyuk (2013), Geomagnetic disturbances in the geomagnetic field’s variations at stages of preparation and implementation of the Elazig (March 8, 2010) and M 5.3 (January 19, 2011) earthquakes in Turkey, Doklady Earth Sciences, 449(1), 324–327, https://doi.org/10.1134/s1028334x13030069.

100. Sobolev, G. A., N. A. Zakrzhevskaya, and E. P. Kharin (2001), On the Relation Between Seismicity and Magnetic Storms, Izvestiya, Physics of the Solid Earth, 37(11), 917–927.

101. Sorokin, V. M., E. N. Fedorov, A. Y. Schekotov, O. A. Molchanov, and M. Hayakawa (2004), Depression of ULF geomagnetic pulsation related to ionospheric irregularities, Annals of Geophysics, 47(1), 191–198.

102. Sorokin, V. M., A. K. Yashchenko, and V. A. Novikov (2019), A possible mechanism of stimulation of seismic activity by ionizing radiation of solar flares, Earthquake Science, 32(1), 26–34, https://doi.org/10.29382/eqs-2019-0026-3.

103. Spivak, A. A., and S. A. Ryabova (2019), Geomagnetic variations during strong earthquakes, Izvestiya, Physics of the Solid Earth, (6), 3–12, https://doi.org/10.31857/S0002-3337201963-12.

104. Stothers, R. B. (1990), A search for long-term periodicities in large earthquakes of southern and coastal central California, Geophysical Research Letters, 17(11), 1981–1984, https://doi.org/10.1029/gl017i011p01981.

105. Straser, V., G. Cataldi, and D. Cataldi (2015), Solar wind ionic and geomagnetic variations preceding the Md8.3 Chile earthquake, New Concepts in Global Tectonics Journal, 3(3), 394–399.

106. Surkov, V. V., and M. Hayakawa (2006), ULF geomagnetic perturbations due to seismic noise produced by rock fracture and crack formation treated as a stochastic process, Physics and Chemistry of the Earth, Parts A/B/C, 31(4–9), 273–280, https://doi.org/10.1016/j.pce.2006.02.019.

107. Surkov, V. V., and V. A. Pilipenko (1997), Magnetic effects due to earthquakes and underground explosions: a review, Annals of Geophysics, 40(2), https://doi.org/10.4401/ag-3904.

108. Surkov, V. V., V. A. Pilipenko, and A. K. Sinha (2018), Possible mechanisms of co-seismic electromagnetic effect, Acta Geodaetica et Geophysica, 53(1), 157–170, https://doi.org/10.1007/s40328-018-0211-6.

109. Sycheva, N. A., L. M. Bogomolov, and V. N. Sychev (2011), On geoeffective solar flares and variations of the seismic noise level, Izvestiya, Physics of the Solid Earth, 47(3), 207–222, https://doi.org/10.1134/S1069351310101027.

110. Tanskanen, E. I. (2009), A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined, Journal of Geophysical Research: Space Physics, 114(A5), https://doi.org/10.1029/2008JA013682.

111. Tarasov, N. T. (1997), Changes in the seismicity of the crust under electrical action, Doklady Akademii Nauk, 353(4), 542–545 (in Russian).

112. Tarasov, N. T., N. V. Tarasova, A. A. Avagimov, and V. A. Zeigarnik (1999), The effect of high energy electromagnetic pulses on seismicity in central Asia and Kazakhstan, Volcanology & Seismology, 21(4), 627–639.

113. Tarasov, N. T., N. V. Tarasova, A. A. Avagimov, and V. A. Zeigarnik (2001), The Effect of Electromagnetic Impacts on Seismicity over the Bishkek Geodynamic Test Ground, Russian Geology and Geophysics, 42(10), 1641–1649.

114. Thomas, J. N., J. J. Love, and M. J. S. Johnston (2009a), On the reported magnetic precursor of the 1989 Loma Prieta earthquake, Physics of the Earth and Planetary Interiors, 173(3–4), 207–215, https://doi.org/10.1016/j.pepi.2008.11.014.

115. Thomas, J. N., J. J. Love, M. J. S. Johnston, and K. Yumoto (2009b), On the reported magnetic precursor of the 1993 Guam earthquake, Geophysical Research Letters, 36(16), https://doi.org/10.1029/2009GL039020

116. Tsutsui, M. (2005), Identification of earthquake epicenter from measurements of electromagnetic pulses in the Earth, Geophysical Research Letters, 32(20), https://doi.org/10.1029/2005GL023691

117. Walker, S. N., V. Kadirkamanathan, and O. A. Pokhotelov (2013), Changes in the ultra-low frequency wave field during the precursor phase to the Sichuan earthquake: DEMETER observations, Annales Geophysicae, 31(9), 1597–1603, https://doi.org/10.5194/angeo-31-1597-2013.

118. Wang, Z., C. Zhou, S. Zhao, X. Xu, M. Liu, Y. Liu, L. Liao, and X. Shen (2021), Numerical Study of Global ELF Electromagnetic Wave Propagation with Respect to Lithosphere–Atmosphere–Ionosphere Coupling, Remote Sensing, 13(20), 4107, https://doi.org/10.3390/rs13204107.

119. Warden, S., L. MacLean, J. Lemon, and D. Schneider (2020), Statistical Analysis of Pre-earthquake Electromagnetic Anomalies in the ULF Range, Journal of Geophysical Research: Space Physics, 125(10), https://doi.org/10.1029/2020JA027955.

120. Yagova, N. V., A. K. Sinha, V. A. Pilipenko, E. N. Fedorov, R. Holzworth, and G. Vichare (2019), ULF electromagnetic noise from regional lightning activity: Model and observations, Journal of Atmospheric and Solar-Terrestrial Physics, 182, 223–228, https://doi.org/10.1016/j.jastp.2018.12.005.

121. Zakrzhevskaya, N. A., and G. A. Sobolev (2002), On the Seismicity Effect of Magnetic Storms, Izvestiya, Physics of the Earth, 38(4), 249–261.

122. Zakrzhevskaya, N. A., and G. A. Sobolev (2004), The Effects of Magnetic Storms with an Abrupt Start on Seismicity in Different Regions, Volcanology & Seismology, (3), 63–75 (in Russian).

123. Zeigarnik, V. A., L. M. Bogomolov, and V. A. Novikov (2022), Electromagnetic Earthquake Triggering: Field Observations, Laboratory Experiments, and Physical Mechanisms - A Review, Izvestiya, Physics of the Solid Earth, 58(1), 30–58, https://doi.org/10.1134/S1069351322010104.

124. Zettergren, M. D., and J. B. Snively (2015), Ionospheric response to infrasonic-acoustic waves generated by natural hazard events, Journal of Geophysical Research: Space Physics, 120(9), 8002–8024, https://doi.org/10.1002/2015JA021116.

125. Zhang, X., X. Shen, S. Zhao, L. Yao, X. Ouyang, and J. Qian (2014), The characteristics of quasistatic electric field perturbations observed by DEMETER satellite before large earthquakes, Journal of Asian Earth Sciences, 79, 42–52, https://doi.org/10.1016/j.jseaes.2013.08.026.

126. Zhima, Z., R. Yan, J. Lin, Q. Wang, Y. Yang, and other (2022), The Possible Seismo-Ionospheric Perturbations Recorded by the China-Seismo-Electromagnetic Satellite, Remote Sensing, 14(4), 905, https://doi.org/10.3390/rs14040905.

127. Zhu, K., M. Fan, X. He, D. Marchetti, K. Li, Z. Yu, C. Chi, H. Sun, and Y. Cheng (2021), Analysis of Swarm Satellite Magnetic Field Data Before the 2016 Ecuador (Mw = 7.8) Earthquake Based on Non-negative Matrix Factorization, Frontiers in Earth Science, 9, https://doi.org/10.3389/feart.2021.621976.

Login or Create
* Forgot password?