from 01.01.1985 until now
Institute of Geosphere Dynamics of the Russian Academy of Sciences
Makhachkala, Makhachkala, Russian Federation
from 01.01.1994 until now
Makhachkala, Makhachkala, Russian Federation
Tomsk State University (Science Department)
Moscow, Moscow, Russian Federation
Tomsk State University (Science Department)
Moscow, Russian Federation
Makhachkala, Makhachkala, Russian Federation
Institute of Geosphere Dynamics of the Russian Academy of Sciences
Tomsk State University (Science Department)
Vladivostok, Russian Federation
UDK 532.685 Движение жидкостей в пористых телах
UDK 532.71 Осмос
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
Freezing patterns in a porous soil saturated with a saline solution are investigated with regard to osmotic effects, using a model suggested previously by the authors but in a more general formulation. The results include a numerical and an approximate self-similar analytical solution to a nonlinear problem; description of typical freezing behavior in the presence of osmotic pressure. The modeling results agree well with experimental evidence on freezing of saline clay and sand. The model includes three porous domains with ice (I), thermodynamically equilibrated ice+solution (II), and a liquid saline solution (III) in the pores. The modeling is performed for a simplified case of domains II and III that share a mobile phase boundary where the solution freezes up partially, with heat release.
freezing, saline rock, osmosis, mathematical model, modeling, physical model
1. Berry, F. A. F., and B. B. Hanshaw (1960), Geologic evidence suggesting membrane properties of shales, in International Geological Congress: report of the twenty-first session, p. 209.
2. Chuvilin, E. M. (1999), Migration of ions of chemical elements in freezing and frozen soils, Polar Record, 35(192), 59–66, https://doi.org/10.1017/S0032247400026346.
3. Chuvilin, E. M., E. D. Ershov, and N. S. Naletova (1998), Mass transfer and structure formation in freezing saline soils, in PERMAFROST - Seventh International Conference (Proceedings), Yellowknife (Canada), Collection Nordicana No 55, Centre d’études nordiques, Université Laval.
4. Chuvilin, E. M., V. Ekimova, B. Bukhanov, et al. (2019), Role of Salt Migration in Destabilization of Intra Permafrost Hydrates in the Arctic Shelf: Experimental Modeling, Geosciences, 9(4), 188, https://doi.org/10.3390/geosciences9040188.
5. Dubikov, G. I., and N. V. Ivanova (1990), Saline frozen soils and their distribution in the USSR territory, in Saline Frozen Soils as Foundations, pp. 3–9, Nauka, Moscow (in Russian).
6. Ershov, E. D., I. A. Komarov, and E. M. Chuvilin (1997), Forecast for interaction of liquid technogenous brines buried into permafrost, Geoekologiya, (2), 19–29 (in Russian).
7. Kemper, W. D. (1961), Movement of Water as Effected by Free Energy and Pressure Gradients: II. Experimental Analysis of Porous Systems in Which Free Energy and Pressure Gradients Act in Opposite Directions, Soil Science Society of America Journal, 25(4), 260–265, https://doi.org/10.2136/sssaj1961.03615995002500040010x.
8. Lobkovskii, L. I., and M. M. Ramazanov (2018), Front Regime of Heat and Mass Transfer in a Gas Hydrate Reservoir under the Negative Temperature Conditions, Fluid Dynamics, 53(4), 517–530, https://doi.org/10.1134/S0015462818040092.
9. Maksimov, A. M., and G. G. Tsypkin (1987), Overheating and formation of a two-phase zone at phase transitions in permafrost, DAN USSR, 294(5), 1117–1121 (in Russian).
10. Marine, I. W., and S. J. Fritz (1981), Osmotic model to explain anomalous hydraulic heads, Water Resources Research, 17(1), 73–82, https://doi.org/10.1029/WR017I001P00073.
11. Neuzil, C. E. (2000), Osmotic generation of ’anomalous’ fluid pressures in geological environments, Nature, 403(6766), 182–184, https://doi.org/10.1038/35003174.
12. Ramazanov, M. M., A. V. Karakin, and L. I. Lobkovskiy (2019), Mathematical Model for the Motion of Solutions Taking into Account the Osmotic Effect, Doklady Earth Sciences, 489(1), 1306–1309, https://doi.org/10.1134/S1028334X19110060.
13. Ramazanov, M. M., N. S. Bulgakova, and L. I. Lobkovskiy (2022), Osmotic Convection, Doklady Physics, 67(5), 153–158, https://doi.org/10.1134/S1028335822040061.
14. Ramazanov, M. M., N. Bulgakova, and L. Lobkovsky (2023), Mathematical Model of Freezing of Rocks Saturated With Salt Solution Taking Into Account the Influence of Osmosis, Russian Journal of Earth Sciences, 23(5), 1–15, https://doi.org/10.2205/2023ES000857.
15. Shakhova, N., I. Semiletov, O. Gustafsson, et al. (2017), Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf, Nature Communications, 8(1), https://doi.org/10.1038/ncomms15872.
16. Streletskaya, I. D., and M. O. Leibman (2002), Cryogeochemical interrelation of massive ground ice, cryopegs, and enclosing deposits of central Yamal, Kriosfera Zemli, VI(3), 15–24 (in Russian), EDN: PWYRFB.
17. Tsypkin, G. G. (2009), Flows with Phase Transitions in Porous Media, 232 pp., Fizmatlit (in Russian).
18. Vasiliev, V. I., A. M. Maksimov, E. E. Petrov, and G. G. Tsypkin (1996), Heat and Mass Transfer in Freezing and Thawing Soils, 224 pp., Fizmatlit, Nauka, Moscow (in Russian).
19. Yakushev, V. S. (2009), Natural Gas and Gas Hydrate in Permafrost, 190 pp., VNIIGAZ, Moscow (in Russian), EDN: OTRYFK.