Russian Federation
Empress Catherine II St. Petersburg Mining University
St. Petersburg, Russian Federation
Russian Federation
Russian Federation
Empress Catherine II St. Petersburg Mining University
Russian Federation
UDK 54 Химия. Кристаллография. Минералогия
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
For the first time, a study was carried out on the geochemistry of zircon (SIMS method, 2 samples, 20 points) from leucogranites of the Laghman complex, located in the pegmatite-bearing (LCT-type) province of Nuristan (Afghanistan). Zircon is characterized by a high Hf content (up to 34 500 ppm), which tends to increase towards the edges of the grains. An increase in the content of Li, Ca, and U is correlated with an increase in Hf. The content of Ti varies slightly and corresponds to the crystallization temperature of zircon about 700 ∘C. The pattern of REE distribution is unusual. In most grains there is no positive Ce-anomaly, which is not typical for igneous zircon. For a number of grains, the marginal zones are distinguished by a reduced content of REE and a flat distribution pattern of light REE. The reason for this distribution of REE and the absence of Ce-anomaly is probably the joint crystallization of zircon with titanite, which concentrates REE and affects the fractionation of light REE. A comparison of the studied zircon with zircon from other leucogranites, including those considered as parental for LCT pegmatites, showed a high degree of fractionation of the melt of leucogranites of the Laghman complex, manifested in a high content of a number of trace elements (Hf, U and others). Therefore, the previously stated assumption about the genetic connection of leucogranites of the Laghman complex and large pegmatite lithium deposits, widely represented in the Nuristan province, in northeastern Afghanistan, is confirmed by new data on zircon geochemistry.
zircon, geochemistry of trace elements, geochemistry of rare earth elements, leucogranites, Laghman complex, Nuristan.
1. Claiborne L. L., Miller C. F., Wooden J. L. Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada // Contributions to Mineralogy and Petrology. — 2010. — Vol. 160, no. 4. — P. 511–531. — DOI:https://doi.org/10.1007/s00410-010-0491-5.
2. Fedotova A. A., Bibikova E. V., Simakin S. G. Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies // Geochemistry International. — 2008. — Vol. 46, no. 9. — P. 912–927. — DOI:https://doi.org/10.1134/S001670290809005X. — EDN: JRFNRX.
3. Gulbin, Yu. L., Akbarpuran Khaiyati S. A., Sirotkin A. N. Mineral composition and thermobarometry of metamorphic rocks of western Ny Friesland, Svalbard // Journal of Mining Institute. — 2023. — Vol. 263. — P. 657–673. — EDN: XGNKDQ.
4. Hoskin P. W. O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia // Geochimica et Cosmochimica Acta. — 2005. — Vol. 69, no. 3. — P. 637–648. — DOI:https://doi.org/10.1016/j.gca.2004.07.006.
5. Ivanova A. A., Syritso L. F., Badanina E. V., et al. Zircon from the Turga Multiphase Massif with Amazonite Granites (Eastern Transbaikalia) and Its Petrogenetic Significance // Geology of Ore Deposits. — 2019. — Vol. 61, no. 8. — P. 707–721. — DOI:https://doi.org/10.1134/S1075701519080051.
6. Kudryashov N. M., Udoratina O. V., Coble M. A., et al. Geochronological and Geochemical Study of Zircon from Tourmaline-Muscovite Granites of the Archaean Kolmozero-Voronya Greenstone Belt: Insights into Sources of the Rare-Metal Pegmatites // Minerals. — 2020. — Vol. 10, no. 9. — P. 760. — DOI:https://doi.org/10.3390/min10090760.
7. Levashova E., Skublov S., Hamdard N., et al. Trace element composition (ppm) of zircon from leucogranites of the Laghman complex. — ESDB repository, GCRAS, 2024. — DOI:https://doi.org/10.2205/2024es000916-data.
8. Loader M. A., Nathwani C. L., Wilkinson J. J., et al. Controls on the magnitude of Ce anomalies in zircon // Geochimica et Cosmochimica Acta. — 2022. — Vol. 328. — P. 242–257. — DOI:https://doi.org/10.1016/j.gca.2022.03.024.
9. McDonough W. F., Sun S.-S. The composition of the Earth // Chemical Geology. — 1995. — Vol. 120, no. 3/4. — P. 223–253. — DOI:https://doi.org/10.1016/0009-2541(94)00140-4.
10. Rossovskiy L. N., Chmyrev V. M. Distribution patterns of rare-metal pegmatites in the Hindu Kush (Afghanistan) // International Geology Review. — 1977. — Vol. 19, no. 5. — P. 511–520. — DOI:https://doi.org/10.1080/00206817709471047.
11. Rossovsky L. N. Rare metallic pegmatite belts of the Hindukush, Eastern Afghanistan // Geotectonic evolution and metallogeny of the Mediterranean area and Western Asia. — Vienna: Springer, 1986. — P. 53–58.
12. Skublov S. G., Levashova E. V., Mamykina M. E., et al. The polyphase Belokurikhinsky granite massif, Gorny Altai: isotope-geochemical study of zircon // Journal of Mining Institute. — 2024. — EDN: RGKCIJ.
13. Skublov S. G., Petrov D. A., Galankina O. L., et al. Th-Rich Zircon from a Pegmatite Vein Hosted in the Wiborg Rapakivi Granite Massif // Geosciences. — 2023. — Vol. 13, no. 12. — P. 362. — DOI:https://doi.org/10.3390/geosciences13120362.
14. Wang X., Griffin W. L., Chen J. Hf contents and Zr/Hf ratios in granitic zircons // Geochemical Journal. — 2010. — Vol. 44, no. 1. — P. 65–72. — DOI:https://doi.org/10.2343/geochemj.1.0043.
15. Watson E. B., Wark D. A., Thomas J. B. Crystallization thermometers for zircon and rutile // Contributions to Mineralogy and Petrology. — 2006. — Vol. 151, no. 4. — P. 413–433. — DOI:https://doi.org/10.1007/s00410-006-0068-5.
16. Xia X.-P., Meng J., Ma L., et al. Tracing magma water evolution by H2O-in-zircon: A case study in the Gangdese batholith in Tibet // Lithos. — 2021. — Vol. 404/405. — P. 106445. — DOI:https://doi.org/10.1016/j.lithos.2021.106445.
17. Yang W.-B., Niu H.-C., Shan Q., et al. Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr-REE-Nb mineralization // Mineralium Deposita. — 2013. — Vol. 49, no. 4. — P. 451–470. — DOI:https://doi.org/10.1007/s00126-013-0504-1.