Moscow, Russian Federation
VAC 2.8.6 Геомеханика, разрушение горных пород, рудничная аэрогазодинамика и горная теплофизика
VAC 1.6.11 Геология, поиски, разведка и эксплуатация нефтяных и газовых месторождений
VAC 1.6.3 Петрология, вулканология
VAC 1.2.2 Математическое моделирование, численные методы и комплексы программ
VAC 1.3.2 Приборы и методы экспериментальной физики
VAC 1.6 Науки о Земле и окружающей среде
UDK 552.08 Исследование, определение и измерение пород, их природа и свойства
UDK 552.12 Структура и текстура, размеры и природа составных частей, кристаллическое состояние пород
UDK 552.51 Песчаные горные породы (псаммитовые породы)
UDK 553.98 Месторождения углеводородов. Нефтегазоносность
UDK 616-073.756.8 Послойная рентгенография. Томография
UDK 531.731.43 Измерение пористости
UDK 539.217.1 Пористость
UDK 539.217 Пористость. Влагопроницаемость. Гигроскопичность. Проницаемость
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 52.47 Разработка нефтяных и газовых месторождений
GRNTI 37.31 Физика Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.06.01 Науки о Земле
OKSO 03.04.01 Прикладные математика и физика
OKSO 21.02.01 Разработка и эксплуатация нефтяных и газовых месторождений
OKSO 21.05.05 Физические процессы горного или нефтегазового производства
BBK 263 Геологические науки
BBK 260 Земля в целом
BBK 222 Механика
BBK 221 Математика
BBK 26 Науки о Земле
TBK 6335 Геология полезных ископаемых
TBK 6338 Инженерная геология
TBK 6339 Прочие издания
TBK 6139 Прочие издания. Прикладная физика
TBK 63 Науки о Земле. Экология
BISAC JNF037060 Science & Nature / Earth Sciences / Rocks & Minerals
BISAC NAT030000 Rocks & Minerals
BISAC TEC009150 Civil / Soil & Rock
BISAC SCI SCIENCE
The paper presents the results of pore space studies of highly porous reservoir rocks of underground gas storage (UGS) facilities using the digital analysis of computed microtomography images. The methodology of complex nondestructive analysis of structural and filtration-capacitance properties has been developed. Structural heterogeneities and rock fracturing were evaluated. 3D models of specimen inner space were created on the basis of multi-scale images. The values of open and closed porosity, geodesic tortuosity were calculated, the characteristics of percolation paths in the studied rocks were analyzed for different directions of intrusion. Conclusions were made about the homogeneity of percolation path distribution over the rock volume. The spatial distribution of porosity in the rocks was studied, and porometry analysis of the rocks was carried out. Numerical modeling of filtration processes on the obtained structures in the framework of Stokes approximation for three selected directions in the rock by means of GeoDict software was carried out. It is shown that there is no pronounced dependence of changes in filtration properties in the selected directions on the quantitative characteristics of the pore space. The conclusion is made about the degree of anisotropy of filtration-capacitance properties of rocks. The good correspondence of the characteristics measured in the course of digital analysis with in-situ data and experimentally obtained laboratory values is shown. The described technique allows to simplify data acquisition on the characteristics of fine-grained reservoir rocks, and is designed to extend the approaches to nondestructive analysis of core material. The obtained reservoir properties data is necessary for the operational models development of UGS, clarifying integral reservoir properties and filling hydrodynamic models of hydrocarbon storage and production facilities.
reservoir porosity, filtration-capacitance properties, CT scanning of rocks, digital core analysis, numerical modeling of filtration flow, permeability anisotropy.
1. Aliev Z. S. i Kotlyarova E. M. Priblizhennyy metod sozdaniya i ekspluatacii PHG v neodnorodnyh po tol- schine plastah s ispol'zovaniem gorizontal'nyh skvazhin // Ekologicheskaya otvetstvennost' neftegazovyh predpriyatiy. — Amirit, 2017. — EDN: https://elibrary.ru/ZBVNGD.
2. Garayshin A. S. i Kantyukov R. R. Vybor plasta-akkumulyatora dlya zahoroneniya promyshlennyh stokov Arbuzovskogo PHG // Georesursy. — 2017. — T. 1, № 19. — S. 82—89. — DOI:https://doi.org/10.18599/grs.19.1.13. — EDN: https://elibrary.ru/YRWLOV.
3. Grishin D. V. Kompleksnaya tehnologiya povysheniya proizvoditel'nosti skvazhin podzemnyh hranilisch gaza v usloviyah razrusheniya plasta-kollektora : dis. kand. / Grishin D. V. — 2019. — EDN: https://elibrary.ru/GYWDSR.
4. Karev V. I., Kovalenko Yu. F., Himulya V. V. i dr. Fizicheskoe modelirovanie metoda napravlennoy razgruzki plasta // Gazovaya promyshlennost'. — 2021. — № 7. — S. 66—73. — EDN: https://elibrary.ru/QJFUXF.
5. Krivoschekov S. N. i Kochnev A. A. Opredelenie emkostnyh svoystv porod-kollektorov s primeneniem rentgenovskoy tomografii kerna // Master’s journal. — 2014. — T. 1. — S. 120—128. — EDN: https://elibrary.ru/SKFCHR.
6. Maksimov V. M., Dmitriev N. M. i Antonevich Yu. S. Effekty tenzornogo haraktera otnositel'nyh fazovyh pronicaemostey pri vzaimnom vytesnenii gaza vodoy v anizotropnyh plastah // Georesursy, geoenergetika, geopolitika. — 2010. — 1(1). — S. 25—34. — EDN: https://elibrary.ru/SIYMFR.
7. Himulya V. V. i Barkov S. O. Analiz izmeneniya vnutrenney struktury nizkopronicaemyh porod-kollektorov sredstvami komp'yuternoy tomografii pri realizacii metoda napravlennoy razgruzki plasta // Aktual'nye problemy nefti i gaza. — 2022. — № 39. — S. 27—42. — DOI:https://doi.org/10.29222/ipng.2078-5712.2022-39.art3.
8. Himulya V. V., Barkov S. O. i Shevcov N. I. Cifrovoe issledovanie harakteristik porovogo prostranstva i strukturnyh svoystv kollektora gazokondensatnogo mestorozhdeniya na osnove mikrotomografii // Processy v geosredah. — 2024. — № 1. — S. 2332—2340. — EDN: https://elibrary.ru/CSQXZO.
9. Backeberg N. R., Iacoviello F., Rittner M., et al. Quantifying the anisotropy and tortuosity of permeable pathways in clay-rich mudstones using models based on X-ray tomography // Scientific Reports. — 2017. — Vol. 7, no. 1. — DOI:https://doi.org/10.1038/s41598-017-14810-1.
10. Bali A. and Singh Sh. N. A Review on the Strategies and Techniques of Image Segmentation // 2015 Fifth International Conference on Advanced Computing & Communication Technologies. — IEEE, 2015. — P. 113–120. — DOI:https://doi.org/10.1109/ACCT.2015.63.
11. Chen M., Bai M. and Roegiers J.-C. Permeability tensors of anisotropic fracture networks // Mathematical Geology. — 1999. — Vol. 31, no. 4. — P. 335–373. — DOI:https://doi.org/10.1023/A:1007534523363.
12. Clavaud J.-B., Maineult A., Zamora M., et al. Permeability anisotropy and its relations with porous medium structure // Journal of Geophysical Research: Solid Earth. — 2008. — Vol. 113, B1. — DOI:https://doi.org/10.1029/2007JB005004.
13. Daish C., Blanchard R., Gulati K., et al. Estimation of anisotropic permeability in trabecular bone based on microCT imaging and pore-scale fluid dynamics simulations // Bone Reports. — 2017. — Vol. 6. — P. 129–139. — DOI:https://doi.org/10.1016/j.bonr.2016.12.002.
14. Holzer L., Marmet Ph., Fingerle M., et al. Tortuosity and Microstructure Effects in Porous Media: Classical Theories, Empirical Data and Modern Methods. — Springer International Publishing, 2023. — DOI:https://doi.org/10.1007/978-3-031-30477- 4.
15. Khimulia V. V. Digital Examination of Pore Space Characteristics and Structural Properties of a Gas Condensate Field Reservoir on the Basis of 𝜇CT Images // Proceedings of the 9th International Conference on Physical and Mathematical Modelling of Earth and Environmental Processes. — Springer Nature Switzerland, 2024. — P. 23–34. — DOI:https://doi.org/10.1007/978-3-031-54589-4_3.
16. Khimulia V. V., Karev V., Kovalenko Yu., et al. Changes in filtration and capacitance properties of highly porous reservoir in underground gas storage: CT-based and geomechanical modeling // Journal of Rock Mechanics and Geotechnical Engineering. — 2024. — Vol. 16, no. 8. — P. 2982–2995. — DOI:https://doi.org/10.1016/j.jrmge.2023.12.015.
17. Kovářová K., Ševčík R. and Weishauptová Z. Comparison of mercury porosimetry and X-ray microtomography for porosity study of sandstones // Acta Geodynamica et Geomaterialia. — 2012. — Vol. 9, no. 4. — P. 168–178.
18. Krivoshchekov S., Kochnev A., Kozyrev N., et al. Factoring Permeability Anisotropy in Complex Carbonate Reservoirs in Selecting an Optimum Field Development Strategy // Energies. — 2022. — Vol. 15, no. 23. — P. 8866. — DOI:https://doi.org/10.3390/en15238866.
19. Linden S., Wiegmann A. and Hagen H. The LIR space partitioning system applied to the Stokes equations // Graphical Models. — 2015. — Vol. 82. — P. 58–66. — DOI:https://doi.org/10.1016/j.gmod.2015.06.003.
20. Math2Market GmbH. FlowDict: Single-Phase Fluid Flow. — 2024a. — URL: https://www.math2market.com/geodict- software/geodict-base-modules/simulation/flowdict (visited on 06/02/2024).
21. Math2Market GmbH. GeoDict - The Digital Material Laboratory. — 2024b. — URL: https://www.math2market.de (visited on 06/02/2024).
22. Mostaghimi P., Blunt M. J. and Bijeljic B. Computations of Absolute Permeability on Micro-CT Images // Mathematical Geosciences. — 2012. — Vol. 45, no. 1. — P. 103–125. — DOI:https://doi.org/10.1007/s11004-012-9431-4.
23. Pelissou C., Baccou J., Monerie Y., et al. Determination of the size of the representative volume element for random quasi-brittle composites // International Journal of Solids and Structures. — 2009. — Vol. 46, no. 14/15. — P. 2842–2855. — DOI:https://doi.org/10.1016/j.ijsolstr.2009.03.015.
24. Shreyamsha Kumar B. K. Image denoising based on non-local means filter and its method noise thresholding // Signal, Image and Video Processing. — 2012. — Vol. 7, no. 6. — P. 1211–1227. — DOI:https://doi.org/10.1007/s11760-012-0389-y.
25. Stenzel O., Pecho O., Holzer L., et al. Predicting effective conductivities based on geometric microstructure characteristics // AIChE Journal. — 2016. — Vol. 62, no. 5. — P. 1834–1843. — DOI:https://doi.org/10.1002/aic.15160.
26. Taud H., Martinez-Angeles R., Parrot J. F., et al. Porosity estimation method by X-ray computed tomography // Journal of Petroleum Science and Engineering. — 2005. — Vol. 47, no. 3/4. — P. 209–217. — DOI:https://doi.org/10.1016/j.petrol.2005.03.009. Versteeg H. K. and Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. —Pearson (England) : Pearson Education Limited, 2007.