Application of Digital Core Analysis Technology to Study Filtration-Capacity Properties and Structure of Highly Permeable Rocks of Underground Gas Storage Facilities
Abstract and keywords
Abstract (English):
The paper presents the results of pore space studies of highly porous reservoir rocks of underground gas storage (UGS) facilities using the digital analysis of computed microtomography images. The methodology of complex nondestructive analysis of structural and filtration-capacitance properties has been developed. Structural heterogeneities and rock fracturing were evaluated. 3D models of specimen inner space were created on the basis of multi-scale images. The values of open and closed porosity, geodesic tortuosity were calculated, the characteristics of percolation paths in the studied rocks were analyzed for different directions of intrusion. Conclusions were made about the homogeneity of percolation path distribution over the rock volume. The spatial distribution of porosity in the rocks was studied, and porometry analysis of the rocks was carried out. Numerical modeling of filtration processes on the obtained structures in the framework of Stokes approximation for three selected directions in the rock by means of GeoDict software was carried out. It is shown that there is no pronounced dependence of changes in filtration properties in the selected directions on the quantitative characteristics of the pore space. The conclusion is made about the degree of anisotropy of filtration-capacitance properties of rocks. The good correspondence of the characteristics measured in the course of digital analysis with in-situ data and experimentally obtained laboratory values is shown. The described technique allows to simplify data acquisition on the characteristics of fine-grained reservoir rocks, and is designed to extend the approaches to nondestructive analysis of core material. The obtained reservoir properties data is necessary for the operational models development of UGS, clarifying integral reservoir properties and filling hydrodynamic models of hydrocarbon storage and production facilities.

Keywords:
reservoir porosity, filtration-capacitance properties, CT scanning of rocks, digital core analysis, numerical modeling of filtration flow, permeability anisotropy.
Text
Text (PDF): Read Download
Text (PDF): Read Download
References

1. Aliev Z. S. i Kotlyarova E. M. Priblizhennyy metod sozdaniya i ekspluatacii PHG v neodnorodnyh po tol- schine plastah s ispol'zovaniem gorizontal'nyh skvazhin // Ekologicheskaya otvetstvennost' neftegazovyh predpriyatiy. — Amirit, 2017. — EDN: https://elibrary.ru/ZBVNGD.

2. Garayshin A. S. i Kantyukov R. R. Vybor plasta-akkumulyatora dlya zahoroneniya promyshlennyh stokov Arbuzovskogo PHG // Georesursy. — 2017. — T. 1, № 19. — S. 82—89. — DOI:https://doi.org/10.18599/grs.19.1.13. — EDN: https://elibrary.ru/YRWLOV.

3. Grishin D. V. Kompleksnaya tehnologiya povysheniya proizvoditel'nosti skvazhin podzemnyh hranilisch gaza v usloviyah razrusheniya plasta-kollektora : dis. kand. / Grishin D. V. — 2019. — EDN: https://elibrary.ru/GYWDSR.

4. Karev V. I., Kovalenko Yu. F., Himulya V. V. i dr. Fizicheskoe modelirovanie metoda napravlennoy razgruzki plasta // Gazovaya promyshlennost'. — 2021. — № 7. — S. 66—73. — EDN: https://elibrary.ru/QJFUXF.

5. Krivoschekov S. N. i Kochnev A. A. Opredelenie emkostnyh svoystv porod-kollektorov s primeneniem rentgenovskoy tomografii kerna // Master’s journal. — 2014. — T. 1. — S. 120—128. — EDN: https://elibrary.ru/SKFCHR.

6. Maksimov V. M., Dmitriev N. M. i Antonevich Yu. S. Effekty tenzornogo haraktera otnositel'nyh fazovyh pronicaemostey pri vzaimnom vytesnenii gaza vodoy v anizotropnyh plastah // Georesursy, geoenergetika, geopolitika. — 2010. — 1(1). — S. 25—34. — EDN: https://elibrary.ru/SIYMFR.

7. Himulya V. V. i Barkov S. O. Analiz izmeneniya vnutrenney struktury nizkopronicaemyh porod-kollektorov sredstvami komp'yuternoy tomografii pri realizacii metoda napravlennoy razgruzki plasta // Aktual'nye problemy nefti i gaza. — 2022. — № 39. — S. 27—42. — DOI:https://doi.org/10.29222/ipng.2078-5712.2022-39.art3.

8. Himulya V. V., Barkov S. O. i Shevcov N. I. Cifrovoe issledovanie harakteristik porovogo prostranstva i strukturnyh svoystv kollektora gazokondensatnogo mestorozhdeniya na osnove mikrotomografii // Processy v geosredah. — 2024. — № 1. — S. 2332—2340. — EDN: https://elibrary.ru/CSQXZO.

9. Backeberg N. R., Iacoviello F., Rittner M., et al. Quantifying the anisotropy and tortuosity of permeable pathways in clay-rich mudstones using models based on X-ray tomography // Scientific Reports. — 2017. — Vol. 7, no. 1. — DOI:https://doi.org/10.1038/s41598-017-14810-1.

10. Bali A. and Singh Sh. N. A Review on the Strategies and Techniques of Image Segmentation // 2015 Fifth International Conference on Advanced Computing & Communication Technologies. — IEEE, 2015. — P. 113–120. — DOI:https://doi.org/10.1109/ACCT.2015.63.

11. Chen M., Bai M. and Roegiers J.-C. Permeability tensors of anisotropic fracture networks // Mathematical Geology. — 1999. — Vol. 31, no. 4. — P. 335–373. — DOI:https://doi.org/10.1023/A:1007534523363.

12. Clavaud J.-B., Maineult A., Zamora M., et al. Permeability anisotropy and its relations with porous medium structure // Journal of Geophysical Research: Solid Earth. — 2008. — Vol. 113, B1. — DOI:https://doi.org/10.1029/2007JB005004.

13. Daish C., Blanchard R., Gulati K., et al. Estimation of anisotropic permeability in trabecular bone based on microCT imaging and pore-scale fluid dynamics simulations // Bone Reports. — 2017. — Vol. 6. — P. 129–139. — DOI:https://doi.org/10.1016/j.bonr.2016.12.002.

14. Holzer L., Marmet Ph., Fingerle M., et al. Tortuosity and Microstructure Effects in Porous Media: Classical Theories, Empirical Data and Modern Methods. — Springer International Publishing, 2023. — DOI:https://doi.org/10.1007/978-3-031-30477- 4.

15. Khimulia V. V. Digital Examination of Pore Space Characteristics and Structural Properties of a Gas Condensate Field Reservoir on the Basis of 𝜇CT Images // Proceedings of the 9th International Conference on Physical and Mathematical Modelling of Earth and Environmental Processes. — Springer Nature Switzerland, 2024. — P. 23–34. — DOI:https://doi.org/10.1007/978-3-031-54589-4_3.

16. Khimulia V. V., Karev V., Kovalenko Yu., et al. Changes in filtration and capacitance properties of highly porous reservoir in underground gas storage: CT-based and geomechanical modeling // Journal of Rock Mechanics and Geotechnical Engineering. — 2024. — Vol. 16, no. 8. — P. 2982–2995. — DOI:https://doi.org/10.1016/j.jrmge.2023.12.015.

17. Kovářová K., Ševčík R. and Weishauptová Z. Comparison of mercury porosimetry and X-ray microtomography for porosity study of sandstones // Acta Geodynamica et Geomaterialia. — 2012. — Vol. 9, no. 4. — P. 168–178.

18. Krivoshchekov S., Kochnev A., Kozyrev N., et al. Factoring Permeability Anisotropy in Complex Carbonate Reservoirs in Selecting an Optimum Field Development Strategy // Energies. — 2022. — Vol. 15, no. 23. — P. 8866. — DOI:https://doi.org/10.3390/en15238866.

19. Linden S., Wiegmann A. and Hagen H. The LIR space partitioning system applied to the Stokes equations // Graphical Models. — 2015. — Vol. 82. — P. 58–66. — DOI:https://doi.org/10.1016/j.gmod.2015.06.003.

20. Math2Market GmbH. FlowDict: Single-Phase Fluid Flow. — 2024a. — URL: https://www.math2market.com/geodict- software/geodict-base-modules/simulation/flowdict (visited on 06/02/2024).

21. Math2Market GmbH. GeoDict - The Digital Material Laboratory. — 2024b. — URL: https://www.math2market.de (visited on 06/02/2024).

22. Mostaghimi P., Blunt M. J. and Bijeljic B. Computations of Absolute Permeability on Micro-CT Images // Mathematical Geosciences. — 2012. — Vol. 45, no. 1. — P. 103–125. — DOI:https://doi.org/10.1007/s11004-012-9431-4.

23. Pelissou C., Baccou J., Monerie Y., et al. Determination of the size of the representative volume element for random quasi-brittle composites // International Journal of Solids and Structures. — 2009. — Vol. 46, no. 14/15. — P. 2842–2855. — DOI:https://doi.org/10.1016/j.ijsolstr.2009.03.015.

24. Shreyamsha Kumar B. K. Image denoising based on non-local means filter and its method noise thresholding // Signal, Image and Video Processing. — 2012. — Vol. 7, no. 6. — P. 1211–1227. — DOI:https://doi.org/10.1007/s11760-012-0389-y.

25. Stenzel O., Pecho O., Holzer L., et al. Predicting effective conductivities based on geometric microstructure characteristics // AIChE Journal. — 2016. — Vol. 62, no. 5. — P. 1834–1843. — DOI:https://doi.org/10.1002/aic.15160.

26. Taud H., Martinez-Angeles R., Parrot J. F., et al. Porosity estimation method by X-ray computed tomography // Journal of Petroleum Science and Engineering. — 2005. — Vol. 47, no. 3/4. — P. 209–217. — DOI:https://doi.org/10.1016/j.petrol.2005.03.009. Versteeg H. K. and Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. —Pearson (England) : Pearson Education Limited, 2007.

Login or Create
* Forgot password?