Short-Term High-Resolution Weather Forecasting in the City of Khabarovsk, Russia
Abstract and keywords
Abstract (English):
Experimental short-term numerical weather prediction system based on the Weather Research and Forecasting (WRF) model with grid spacing of 1 km for the city of Khabarovsk, Russia is presented. Single-layer urban canopy parametrization is used in the model runs and takes into consideration urban land use. Urban land surface consists of three types: low-rise, high-rise buildings and industrial zones. Niceties of forecasts’ interpretation in a large city based on data of a high-resolution numerical grid are considered. Simulations of the WRF model with the grid spacing of 1 km have shown better quality of prediction in the city than forecasts on the grid spacing of 5 km for the period of time from June to December of 2023. Mean absolute errors of the forecasting speed and direction of surface wind with a velocity above 10 m/s are 2.9 m/s and 3.2 m/s, and 14∘ and 32∘ and absolute error of the forecasting air temperature is 1.6∘ and 3.1∘ for the WRF model with the grid spacing of 1 and 5 km respectively for the considered period of time.

Keywords:
numerical weather prediction, mesoscale process, heavy rainfall, strong wind, land use, WRF-ARW, Khabarovsk
Text
Text (PDF): Read Download
References

1. Grigoriev V. A., Ogorodnikov I. A. Problems of cities’ ecologization in the world, Russia and Siberia: Analytical review. — Novosibirsk : Ecology. Series of analytical reviews of world literature, Issue 63. State Public Scientific, Technical Library of the Siberian Branch of the Russian Academy of Sciences, 2001. — P. 152. — EDN: https://elibrary.ru/FMJFFB ; (in Russian).

2. Kuznetsova I. N., Brusova N. E., Nakhaev M. I. Moscow Urban Heat Island: Detection, boundaries, and variability // Russian Meteorology and Hydrology. — 2017. — Vol. 42, no. 5. — P. 305–313. — DOI:https://doi.org/10.3103/S1068373917050053. EDN: https://elibrary.ru/YNWCKX

3. Rivin G. S., Rozinkina I. A., Vil’fand R. M., et al. Development of the High-resolution Operational System for Numerical Prediction of Weather and Severe Weather Events for the Moscow Region // Russian Meteorology and Hydrology. — 2020. — Vol. 45, no. 7. — P. 455–465. — DOI:https://doi.org/10.3103/S1068373920070018. EDN: https://elibrary.ru/RVBBLZ

4. Romanskiy S. O., Verbitskaya E. M. Short-Term High-Resolution Numerical Weather Prediction Based on Wrf-Arw Model on the Territory of Vladivostok City // Vestnik of the Far East Branch of the Russian Academy of Sciences. — 2014. — 5(177). — P. 48–57. — EDN: https://elibrary.ru/TNDODH ; (in Russian).

5. Romanskiy S. O., Verbitskaya E. M. Strong Gusty Winds in the City of Yuzhno-Sakhalinsk in the Summer of 2014 // Geosphere Research. — 2023. — No. 4. — P. 141–154. — DOI:https://doi.org/10.17223/25421379/29/10. — EDN: https://elibrary.ru/LZBUBM ; (in Russian).

6. Tarasova M. A., Varentsov M. I., Stepanenko V. M. Parameterization of the Interaction between the Atmosphere and the Urban Surface: Current State and Prospects // Izvestiya, Atmospheric and Oceanic Physics. — 2023. — Vol. 59, no. 2. — P. 111–130. — DOI:https://doi.org/10.1134/s0001433823020068. DOI: https://doi.org/10.31857/S0002351523020062; EDN: https://elibrary.ru/HPPHSS

7. Buchhorn M., Smets B., Bertels L., et al. Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe. — 2020. — DOI:https://doi.org/10.5281/ZENODO.3939050. — (visited on: 17.11.2022).

8. Chen F., Kusaka H., Bornstein R., et al. The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems // International Journal of Climatology. — 2011. — Vol. 31, no. 2. — P. 273–288. — DOI:https://doi.org/10.1002/joc.2158.

9. Dowell D. C., Alexander C. R., James E. P., et al. The High-Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part I: Motivation and System Description // Weather and Forecasting. — 2022. — Vol. 37, no. 8. — P. 1371–1395. — DOI:https://doi.org/10.1175/waf-d-21-0151.1. EDN: https://elibrary.ru/EXHVMO

10. Garuma G. F. Review of urban surface parameterizations for numerical climate models // Urban Climate. — 2018. — Vol. 24. — P. 830–851. — DOI:https://doi.org/10.1016/j.uclim.2017.10.006.

11. Hong Kong Observatory. Numerical modelling for weather prediction in Hong Kong. — 2022. — URL: https://www.hko.gov.hk/en/wservice/tsheet/nwp.htm ; (visited on: 17.01.2024).

12. Jeworrek J., West G., Stull R. W. WRF Precipitation Performance and Predictability for Systematically Varied Parameterizations over Complex Terrain // Weather and Forecasting. — 2021. — Vol. 36, no. 3. — P. 893–913. — DOI:https://doi.org/10.1175/waf-d-20-0195.1. EDN: https://elibrary.ru/DJKQAD

13. Kim G., Lee J., Lee M.-I. Impacts of urbanization on atmospheric circulation and aerosol transport in a coastal environment simulated by the WRF-Chem coupled with urban canopy model // Atmospheric Environment. — 2021. — Vol. 249. — P. 118253. — DOI:https://doi.org/10.1016/j.atmosenv.2021.118253. EDN: https://elibrary.ru/CMFKWL

14. Kusaka H., Kondo H., Kikegawa Y., et al. A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And Slab Models // Boundary-Layer Meteorology. — 2001. — Vol. 101, no. 3. — P. 329–358. — DOI:https://doi.org/10.1023/a:1019207923078. EDN: https://elibrary.ru/ARTEXL

15. Kwok Y. T., Ng Y. Y. E. Trends, topics, and lessons learnt from real case studies using mesoscale atmospheric models for urban climate applications in 2000-2019 // Urban Climate. — 2021. — Vol. 36. — P. 100785. — DOI:https://doi.org/10.1016/j.uclim.2021.100785. EDN: https://elibrary.ru/XBJMFK

16. Lin Y., Wang C., Yan J., et al. Observation and Simulation of Low-Level Jet Impacts on 3D Urban Heat Islands in Beijing: A Case Study // Journal of the Atmospheric Sciences. — 2022. — Vol. 79, no. 8. — P. 2059–2073. — DOI:https://doi.org/10.1175/jas-d-21-0245.1. EDN: https://elibrary.ru/YPIPHL

17. Masson V., Lemonsu A., Hidalgo J., et al. Urban Climates and Climate Change // Annual Review of Environment and Resources. — 2020. — Vol. 45, no. 1. — P. 411–444. — DOI:https://doi.org/10.1146/annurev-environ-012320-083623. EDN: https://elibrary.ru/WLKKFX

18. Mills G., Molina L. T., Schluenzen H., et al. Guidance on Integrated Urban Hydrometeorological, Climate and Environment Services. Vol. II: Demonstration Cities. — Geneva, Switzerland : Publications Board World Meteorological Organization, 2021. — 166 p.

19. Shin H. H., Dudhia J. Evaluation of PBL Parameterizations in WRF at Subkilometer Grid Spacings: Turbulence Statistics in the Dry Convective Boundary Layer // Monthly Weather Review. — 2016. — Mar. — Vol. 144, no. 3. — P. 1161–1177. — DOI:https://doi.org/10.1175/mwr-d-15-0208.1.

20. Siuta D., West G., Stull R. W. WRF Hub-Height Wind Forecast Sensitivity to PBL Scheme, Grid Length, and Initial Condition Choice in Complex Terrain // Weather and Forecasting. — 2017. — Vol. 32, no. 2. — P. 493–509. — DOI:https://doi.org/10.1175/waf-d-16-0120.1.

21. Skamarock W. C., Klemp J. B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications // Journal of Computational Physics. — 2007. — Vol. 227, no. 7. — P. 3465–3485. — DOI:https://doi.org/10.1016/j.jcp.2007.01.037. EDN: https://elibrary.ru/MTVBDN

22. Solbakken K., Birkelund Y., Samuelsen E. M. Evaluation of surface wind using WRF in complex terrain: Atmospheric input data and grid spacing // Environmental Modelling & Software. — 2021. — Vol. 145. — P. 105182. — DOI:https://doi.org/10.1016/j.envsoft.2021.105182.

23. Wang C.-C. On the Calculation and Correction of Equitable Threat Score for Model Quantitative Precipitation Forecasts for Small Verification Areas: The Example of Taiwan // Weather and Forecasting. — 2014. — Vol. 29, no. 4. — P. 788–798. — DOI:https://doi.org/10.1175/waf-d-13-00087.1.

24. Wang L., Li D. Urban Heat Islands during Heat Waves: A Comparative Study between Boston and Phoenix // Journal of Applied Meteorology and Climatology. — 2021. — Vol. 60, no. 5. — P. 621–641. — DOI:https://doi.org/10.1175/JAMC-D-20-0132.1. EDN: https://elibrary.ru/JPLQAI

Login or Create
* Forgot password?