Moscow, Moscow, Russian Federation
Russian Federation
UDK 55 Геология. Геологические и геофизические науки
UDK 556 Гидросфера. Вода в целом. Общая гидрология
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
We analyzed Conductivity-temperature-depth (CTD) and moored Acoustic Doppler Current Profiler (ADCP) measurements in the western Barents Sea carried out onboard the Russian R/V Akademik Mstislav Keldysh (cruise 68) in July–August 2017. A hydrographic section in the Bear Island Trough has been made. Comparison of water properties in the trough and in the sea has been performed. We compared the tidal currents measured on the mooring with those from the TPXO9 model and found that they are quite close.
Barents Sea, Norwegian Sea, CTD and ADCP measurements, mooring, tidal ellipses, ocean circulation, tide
1. Aken, H. M. V., and C. J. D. Boer (1995), On the synoptic hydrography of intermediate and deep water masses in the Iceland Basin, Deep Sea Research Part I: Oceanographic Research Papers, 42(2), 165–189, https://doi.org/10.1016/0967-0637(94)00042-Q
2. Beszczynska-Möller, A., E. Fahrbach, U. Schauer, and E. Hansen (2012), Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997-2010, ICES Journal of Marine Science, 69(5), 852–863, https://doi.org/10.1093/icesjms/fss056.
3. Diansky, N. A., A. V. Bagno, and V. B. Zalesny (2002), Sigma model of global ocean circulation and its sensitivity to variations in wind stress, Izvestiya, Atmospheric and Oceanic Physics, 38(4), 537–556.
4. Diansky, N. A., E. G. Morozov, V. V. Fomin, and D. I. Frey (2021), Spread of Pollution from a Bottom Source in the Norwegian Sea, Izvestiya, Atmospheric and Oceanic Physics, 57(2), 197–207, https://doi.org/10.1134/S0001433821020043.
5. Dickson, R. R., and J. Brown (1994), The production of North Atlantic Deep Water: Sources, rates, and pathways, Journal of Geophysical Research: Oceans, 99(C6), 12,319–12,341, https://doi.org/10.1029/94JC00530
6. Egbert, G. D., and S. Y. Erofeeva (2002), Efficient Inverse Modeling of Barotropic Ocean Tides, Journal of Atmospheric and Oceanic Technology, 19(2), 183–204, https://doi.org/10.1175/1520-0426(2002)0192.0.CO;2.
7. Frey, D. I., A. N. Novigatsky, M. D. Kravchishina, and E. G. Morozov (2017), Water structure and currents in the Bear Island Trough in July-August 2017, Russian Journal of Earth Sciences, 17(3), https://doi.org/10.2205/2017ES000602
8. Gammelsrød, T., Ø.. Leikvin, V. Lien, et al. (2009), Mass and heat transports in the NE Barents Sea: Observations and models, Journal of Marine Systems, 75(1–2), 56–69, https://doi.org/10.1016/j.jmarsys.2008.07.010
9. Giraudeau, J., V. Hulot, V. Hanquiez, et al. (2016), A survey of the summer coccolithophore community in the western Barents Sea, Journal of Marine Systems, 158, 93–105, https://doi.org/10.1016/j.jmarsys.2016.02.012
10. Jochumsen, K., D. Quadfasel, H. Valdimarsson, and S. Jónsson (2012), Variability of the Denmark Strait overflow: Moored time series from 1996–2011, Journal of Geophysical Research: Oceans, 117(C12), https://doi.org/10.1029/2012JC008244
11. Kantha, L. H., and C. A. Clayson (2000), Small Scale Processes in Geophysical Fluid Flows, Volume 67 (International Geophysics), 750 pp., Academic Press.
12. Koltermann, K. P., A. V. Sokov, V. P. Tereschenkov, et al. (1999), Decadal changes in the thermohaline circulation of the North Atlantic, Deep Sea Research Part II: Topical Studies in Oceanography, 46(1–2), 109–138, https://doi.org/10.1016/S0967-0645(98)00115-5.
13. Lankhorst, M., and W. Zenk (2006), Lagrangian Observations of the Middepth and Deep Velocity Fields of the Northeastern Atlantic Ocean, Journal of Physical Oceanography, 36(1), 43–63, https://doi.org/10.1175/JPO2869.1
14. Lind, S., and R. B. Ingvaldsen (2012), Variability and impacts of Atlantic Water entering the Barents Sea from the north, Deep Sea Research Part I: Oceanographic Research Papers, 62, 70–88, https://doi.org/10.1016/j.dsr.2011.12.007.
15. Lukashin, V. N., and A. D. Shcherbinin (2007), The nepheloid layer and horizontal sedimentary matter fluxes in the Norwegian Sea, Oceanology, 47(6), 833–847, https://doi.org/10.1134/S0001437007060082.
16. Mauritzen, C., J. Price, T. Sanford, and D. Torres (2005), Circulation and mixing in the Faroese Channels, Deep Sea Research Part I: Oceanographic Research Papers, 52(6), 883–913, https://doi.org/10.1016/j.dsr.2004.11.018.
17. Morozov, E. (2006), Internal Tides. Global Field of Internal Tides and Mixing Caused by Internal Tides, in Waves in Geophysical Fluids, pp. 271–332, Springer Vienna, https://doi.org/10.1007/978-3-211-69356-8_6.
18. Morozov, E. G., and S. V. Pisarev (2002), Internal tides at the Arctic latitudes (numerical experiments), Oceanology, 42(2), 153–161.
19. Morozov, E. G., I. E. Kozlov, S. A. Shchuka, and D. I. Frey (2017), Internal tide in the Kara Gates Strait, Oceanology, 57(1), 8–18, https://doi.org/10.1134/S0001437017010106.
20. Morozov, E. G., D. I. Frey, N. A. Diansky, and V. V. Fomin (2019), Bottom circulation in the Norwegian Sea, Russian Journal of Earth Sciences, 19(2), 1–6, https://doi.org/10.2205/2019ES000655.
21. Olsen, S. M., B. Hansen, D. Quadfasel, and S. Østerhus (2008), Observed and modelled stability of overflow across the Greenland-Scotland ridge, Nature, 455(7212), 519–522, https://doi.org/10.1038/nature07302.
22. Årthun, M., R. B. Ingvaldsen, L. H. Smedsrud, and C. Schrum (2011), Dense water formation and circulation in the Barents Sea, Deep Sea Research Part I: Oceanographic Research Papers, 58(8), 801–817, https://doi.org/10.1016/j.dsr.2011.06.001.
23. Ruddick, B. (1983), A practical indicator of the stability of the water column to double-diffusive activity, Deep Sea Research Part A. Oceanographic Research Papers, 30(10), 1105–1107, https://doi.org/10.1016/0198-0149(83)90063-8.
24. Schauer, U., E. Fahrbach, S. Osterhus, and G. Rohardt (2004), Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements, Journal of Geophysical Research: Oceans, 109(C6), https://doi.org/10.1029/2003JC001823.
25. Sea-Bird Electronics Inc. (2014), Seasoft V2: SBE Data Processing.
26. Shi, J., and H. Wei (2007), Evidence of double diffusion in the East China Sea, Journal of Marine Systems, 67(3–4), 272–281, https://doi.org/10.1016/j.jmarsys.2006.04.017.
27. Smedsrud, L. H., I. Esau, R. B. Ingvaldsen, et al. (2013), The role of the Barents Sea in the Arctic climate system, Reviews of Geophysics, 51(3), 415–449, https://doi.org/10.1002/rog.20017.
28. Talley, L. D. (2011), Descriptive Physical Oceanography, Elsevier, https://doi.org/10.1016/C2009-0-24322-4.
29. Turner, J. S. (1973), Buoyancy Effects in Fluids, Cambridge University Press, https://doi.org/10.1017/CBO9780511608827.
30. Zalesny, V. B., N. A. Diansky, V. V. Fomin, S. N. Moshonkin, and S. G. Demyshev (2012), Numerical model of the circulation of the Black Sea and the Sea of Azov, Russian Journal of Numerical Analysis and Mathematical Modelling, 27(1), https://doi.org/10.1515/rnam-2012-0006.