Timer LLC
MSU (Faculty of Physics)
from 01.01.1989 to 01.01.1995
Moscow, Moscow, Russian Federation
from 01.01.2007 to 01.01.2023
Moscow, Moscow, Russian Federation
Tyumen, Tyumen, Russian Federation
VAC 1.6.9 Геофизика
VAC 1.6 Науки о Земле и окружающей среде
UDK 537.87 Распространение и излучение электромагнитных волн
UDK 550.37 Геоэлектричество. Земные токи
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
An algorithm for estimating the specific electrical resistance of rocks has been developed based on the velocity analysis of the method of reflected electromagnetic waves data obtained using various offset distance between the receiver and transmitter - electromagnetic CDP (ECDP). The interval electrical resistivity assessment at a point (“virtual well”) based on ECDP data, in contrast to the algorithms of electrical exploration methods, does not require a priori information; measurement data are sufficient. An example of a virtual well describing the dependence of electrical resistance on depth, 500 meters deep, obtained during an experimental study in the cryolithozone, is given.
electromagnetic CDP, deep GPR, electrical resistivity, virtual well
1. Alpin L. M., Daev D. S., Karinsky A. D. Theory of fields applied in exploration geophysics. — Moscow : Nedra, 1985. — 407 p. — (In Russian).
2. Christensen N. B. Difficulties in determining electrical anisotropy in subsurface investigations // Geophysical Prospecting. — 2000. — Vol. 48, no. 1. — P. 1–19. — DOI:https://doi.org/10.1046/j.1365-2478.2000.00174.x.
3. Doyoro Y. G., Chang P.-Y., Puntu J. M., et al. A review of open software resources in python for electrical resistivity modelling // Geoscience Letters. — 2022. — Vol. 9, no. 1. — P. 3. — DOI:https://doi.org/10.1186/s40562-022-00214-1.
4. Electrical Methods: a Guide for Electric Survey Practice for Students majoring in Geophysics / ed. by V. K. Khmelevsky, I. N. Modin, A. G. Yakovlev. — Moscow : GERS, 2005. — 311 p. — (In Russian).
5. Gautier M., Gautier S., Cattin R. PyMERRY: A Python solution for an improved interpretation of electrical resistivity tomography images // GEOPHYSICS. — 2023. — Vol. 89, no. 1. — F23–F39. — DOI:https://doi.org/10.1190/geo2023-0105.1.
6. Hou D., Wang X., Zou J. Inversion of soil resistivity by using CSAMT method // 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). — IEEE, 2020. — P. 1–4. — DOI:https://doi.org/10.1109/ICHVE49031.2020.9279948.
7. Kilpio E. Yu., Shcherbakov I. A. On the results in physics obtained in 2020–2021 // Doklady Rossijskoj Akademii nauk. Fizika, tekhnicheskie nauki. — 2022. — Vol. 506, no. 2. — P. 3–33. — DOI:https://doi.org/10.31857/S2686740022070069. — (In Russian).
8. Olayinka A. I., Yaramanci U. Assessment of the reliability of 2D inversion of apparent resistivity data // Geophysical Prospecting. — 2000. — Vol. 48, no. 2. — P. 293–316. — DOI:https://doi.org/10.1046/j.1365-2478.2000.00173.x.
9. Volkomirskaya L. B., Gulevich O. A. Method for deep georadar and device for implementation thereof. Russian patent published in 2024 №RU2816128C1. — Moscow : LLC “Taymer”, 2024. — (In Russian).
10. Volkomirskaya L. B., Gulevich O. A., Lyakhov G. A., et al. Deep georadiolocation // Journal of Radio Electronics. — 2019. — Vol. 2019, no. 4. — DOI:https://doi.org/10.30898/1684-1719.2019.4.6. — (In Russian).
11. Volkomirskaya L. B., Gulevich O. A., Reznikov A. E., et al. Impact of Signal Registration Technology on GPR Data // Engineering and Mining Geophysics 2021. — European Association of Geoscientists & Engineers, 2021. — P. 1–9. — DOI:https://doi.org/10.3997/2214-4609.202152005.