Russian Federation
Moscow Institute of Physics and Technology (State University)
Russian Federation
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences (junior researcher)
Russian Federation
from 01.01.2023 to 01.01.2024
Moscow Institute of Physics and Technology (State University)
VAC 1.6.9 Геофизика
VAC 1.6 Науки о Земле и окружающей среде
UDK 550.8.056 Определение физических параметров по геофизическим данным
UDK 550.82 Техника геологических (геомеханических) исследований
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.31 Физика Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.06.01 Науки о Земле
BBK 263 Геологические науки
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
The paper presents an algorithm for reconstruction of stress state parameters of rock massif based on data on natural fractures. For one well developing an oil field, the directions of the principal in-situ stresses, their relative magnitudes, and the strength of the rocks in the near-wellbore space were reconstructed. Stress inversion results are in agreement with other methods of stress estimation, in particular, with the results of the mini-hydraulic fracture test. The inverse problem of stress state estimation is solved using the Monte Carlo method. An algorithm of applying the apparatus of mathematical statistics – the method of moments for determining distribution parameters from the Pearson distribution family – to quantify the ambiguity of the estimation of the directions of the principal stresses and their relative magnitudes is presented. The proposed algorithm can be used for independent reconstruction of stresses for carbonate rocks, provided that there is information about the conductivity of fractures in the rocks of the near-wellbore space to further improve the quality of one-dimensional and three-dimensional geomechanical modelling.
stress estimation, critically stressed fractures, caronate collector, reservoir geomechanics, hydraulic fracture
1. Dubinya N. V. An Overview of Wellbore Methods of Investigating Stress State of the Upper Layers of the Earth’s Crust // Izvestiya, Physics of the Solid Earth. — 2019. — Vol. 55, no. 2. — P. 311–326. — DOI:https://doi.org/10.1134/S1069351319020034.
2. Dubinya N. V. Spatial orientations of hydraulically conductive shear natural fractures for an arbitrary stress state: An analytical study of governing geomechanical factors // Journal of Petroleum Science and Engineering. — 2022. — Vol. 212. — P. 110288. — DOI:https://doi.org/10.1016/j.petrol.2022.110288.
3. Dubinya N. V., Tikhotskiy S. A. Method for the Inverse Problem Solution for Reconstruction of Stress Strain State of Rock Mass Based on Natural Fractures Data // Izvestiya, Physics of the Solid Earth. — 2022. — Vol. 58, no. 4. — P. 544–561. — DOI:https://doi.org/10.1134/s1069351322040024.
4. Dubinya N. V., Yezhov K. A. In-situ horizontal stress estimation based on the geometrical properties of fractures in well vicinity // Geophysical Research. — 2017. — Vol. 18, no. 2. — P. 5–26. — DOI:https://doi.org/10.21455/gr2017.2-1.
5. Elderton W. P., Johnson N. L. Systems of Frequency Curves. — Cambridge University Press, 1969. — DOI: 10.1017/ CBO9780511569654.
6. Funato A., Ito T. A new method of diametrical core deformation analysis for in-situ stress measurements // International Journal of Rock Mechanics and Mining Sciences. — 2017. — Vol. 91. — P. 112–118. — DOI:https://doi.org/10.1016/j.ijrmms.2016.11.002.
7. Gaarenstroom L., Tromp R. A. J., Brandenburg A. M. Overpressures in the Central North Sea: implications for trap integrity and drilling safety // Geological Society, London, Petroleum Geology Conference Series. — 1993. — Vol. 4, no. 1. — P. 1305–1313. — DOI:https://doi.org/10.1144/0041305.
8. Galybin A. N., Mokhel A. N. Borehole breakout in rocks with strength anisotropy // 1st Australian Congress on Applied Mechanics: ACAM-96. — Australia : Institution of Engineers, 1996. — P. 943–948.
9. Higgins S., Goodwin S., Donald A., et al. Anisotropic Stress Models Improve Completion Design in the Baxter Shale // SPE Annual Technical Conference and Exhibition. — SPE, 2008. — DOI:https://doi.org/10.2118/115736-ms.
10. Ito T., Fujii R., Evans K. F., et al. Estimation of Stress Profile with Depth from Analysis of Temperature and Fracture Orientation Logs in a 3.6 km Deep Well at Soultz, France // All Days. — SPE, 2002. — DOI:https://doi.org/10.2118/78185-MS.
11. Ljunggren C., Chang Y., Janson T., et al. An overview of rock stress measurement methods // International Journal of Rock Mechanics and Mining Sciences. — 2003. — Vol. 40, no. 7/8. — P. 975–989. — DOI:https://doi.org/10.1016/j.ijrmms.2003.07.003.
12. Novikova E. V., Dubinya N. V. On Stability of Inverse Problem Solution for Rock Mass Stress State Reconstruction Based on Natural Fractures Analysis // Process in geomedia. — 2023. — Vol. 38, no. 4. — P. 2240–2251.
13. Ostadhassan M., Zeng Z., Zamiran S. Geomechanical modeling of an anisotropic formation - Bakken case study // 46th US Rock Mechanics / Geomechanics Symposium. — American Rock Mechanics Association, 2012. — P. 2631–2645.
14. Prats M. Effect of Burial History on the Subsurface Horizontal Stresses of Formations Having Different Material Properties // Society of Petroleum Engineers Journal. — 1981. — Vol. 21, no. 06. — P. 658–662. — DOI:https://doi.org/10.2118/9017-pa.
15. Shkuratnik V. L., Kravchenko O. S., Filimonov Y. L. Stress Memory in Acoustic Emission of Rock Salt Samples in Cyclic Loading under Variable Temperature Effects // Journal of Mining Science. — 2020. — Vol. 56, no. 2. — P. 209–215. — DOI:https://doi.org/10.1134/s1062739120026662.
16. Sinha B. K., Wendt A. S. Estimation of horizontal stress magnitudes using sonic data from vertical and deviated wellbores in a depleted reservoir // Geological Society, London, Special Publications. — 2014. — Vol. 409, no. 1. — P. 67–91. — DOI:https://doi.org/10.1144/SP409.9.
17. Thiercelin M. J., Plumb R. A. Core-Based Prediction of Lithologic Stress Contrasts in East Texas Formations // SPE Formation Evaluation. — 1994. — Vol. 9, no. 04. — P. 251–258. — DOI:https://doi.org/10.2118/21847-pa.
18. Zhang S., Ma X., Zoback M. Determination of the crustal friction and state of stress in deep boreholes using hydrologic indicators // Rock Mechanics Bulletin. — 2023. — Vol. 2, no. 1. — P. 100024. — DOI:https://doi.org/10.1016/j.rockmb.2022.100024.
19. Zoback M. D. Reservoir Geomechanics. — Cambridge University Press, 2007.
20. Zoback M. D., Barton C. A., Brudy M., et al. Determination of stress orientation and magnitude in deep wells // International Journal of Rock Mechanics and Mining Sciences. — 2003. — Vol. 40, no. 7/8. — P. 1049–1076. — DOI:https://doi.org/10.1016/j.ijrmms.2003.07.001.