from 01.01.2018 to 01.01.2024
Sevastopol', Russian Federation
Sevastopol, Sevastopol, Russian Federation
UDK 9 География. Биография. История
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 26 Науки о Земле
TBK 63 Науки о Земле. Экология
BISAC SCI SCIENCE
Here we present the results of observations of short-period internal waves (SIWs) in Fram Strait and near Svalbard based on analysis of Sentinel-1 A/B synthetic aperture radar (SAR) data in June-September 2018. Analysis of 1500 spaceborne SAR images allowed to identify 750 surface signatures of SIWs. Maximal number of SIW identifications is observed in August, when both stratification and ice conditions are favorable for SIW generation and identification in satellite data. Background meteorological conditions in summer 2018 favored the northward movement of the ice boundary up to 82,5 ∘ N that allowed to observe SIWs over the Yermak Plateau. Four main regions of SIW observations were identified – deep Fram Strait region (depths over 2000 m), southwestern Yermak Plateau with depth range of 500–1500 m, and two shelf break/upper continental slope regions northwest from Svalbard with depths below 500 m. Analysis of spatial properties of SIWs has shown that the study region is dominated by SIW trains with a mean crest length of 15 km and mean packet length of about 5 km. The largest SIW trains with area of nearly 400 km2 were observed over the Yermak Plateau where tidal currents are maximal.
short-period internal waves, tidal currents, turbulent mixing, sea ice, satellite radar images of the ocean surface, Fram Strait, Svalbard, Yermak Plateau, Arctic Ocean
1. Alpers W. Theory of radar imaging of internal waves // Nature. — 1985. — Vol. 314, no. 6008. — P. 245–247. — DOI:https://doi.org/10.1038/314245a0.
2. Bukatov A. A. Free Short-Period Internal Waves in the Arctic Seas of Russia // Physical Oceanography. — 2021. — Vol. 28, no. 6. — DOI:https://doi.org/10.22449/1573-160X-2021-6-599-611.
3. Carr M., Sutherland P., Haase A., et al. Laboratory Experiments on Internal Solitary Waves in Ice-Covered Waters // Geophysical Research Letters. — 2019. — Vol. 46, no. 21. — P. 12230–12238. — DOI:https://doi.org/10.1029/2019GL084710.
4. D’Asaro E. A., Morison J. H. Internal waves and mixing in the Arctic Ocean // Deep Sea Research Part A. Oceanographic Research Papers. — 1992. — Vol. 39, no. 2. — S459–S484. — DOI:https://doi.org/10.1016/s0198-0149(06)80016-6.
5. Fer I., Koenig Z., Kozlov I. E., et al. Tidally Forced Lee Waves Drive Turbulent Mixing Along the Arctic Ocean Margins // Geophysical Research Letters. — 2020. — Vol. 47, no. 16. — DOI:https://doi.org/10.1029/2020GL088083.
6. Hattermann T., Isachsen P. E., Appen W.-J. von, et al. Eddy-driven recirculation of Atlantic Water in Fram Strait // Geophysical Research Letters. — 2016. — Vol. 43, no. 7. — P. 3406–3414. — DOI:https://doi.org/10.1002/2016GL068323.
7. Johannessen J. A., Johannessen O. M., Svendsen E., et al. Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiments // Journal of Geophysical Research: Oceans. — 1987. — Vol. 92, no. C7. — P. 6754–6772. — DOI:https://doi.org/10.1029/JC092iC07p06754.
8. Konyaev K. V., Sabinin K. D. Waves inside the ocean. — St. Petersburg : Gidrometeoizdat, 1992.
9. Kopyshov I., Kozlov I., Shiryborova A., et al. Properties of Short-Period Internal Waves in the Kara Gates Strait Revealed from Spaceborne SAR Data // Russian Journal of Earth Sciences. — 2023. — P. 1–11. — DOI:https://doi.org/10.2205/2023ES02SI10.
10. Kozlov I., Kudryavtsev V., Zubkova E., et al. SAR observations of internal waves in the Russian Arctic seas // 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). — IEEE, 2015a. — P. 947–949. — DOI:https://doi.org/10.1109/IGARSS.2015.7325923.
11. Kozlov I. E., Atadzhanova O. A., Zimin A. V. Internal Solitary Waves in the White Sea: Hot-Spots, Structure, and Kinematics from Multi-Sensor Observations // Remote Sensing. — 2022. — Vol. 14, no. 19. — P. 4948. — DOI:https://doi.org/10.3390/rs14194948.
12. Kozlov I. E., Kopyshov I. O., Frey D. I., et al. Multi-Sensor Observations Reveal Large-Amplitude Nonlinear Internal Waves in the Kara Gates, Arctic Ocean // Remote Sensing. — 2023. — Vol. 15, no. 24. — P. 5769. — DOI:https://doi.org/10.3390/rs15245769.
13. Kozlov I. E., Krek E. V., Kostianoy A. G., et al. Remote Sensing of Ice Conditions in the Southeastern Baltic Sea and in the Curonian Lagoon and Validation of SAR-Based Ice Thickness Products // Remote Sensing. — 2020. — Vol. 12, no. 22. — P. 3754. — DOI:https://doi.org/10.3390/rs12223754.
14. Kozlov I. E., Kudryavtsev V. N., Sandven S. Some results of internal waves study in the Barents Sea using satellite radar data // Problems of the Arctic and Antarctic. — 2010. — Vol. 3, no. 86. — P. 60–69.
15. Kozlov I. E., Kudryavtsev V. N., Zubkova E. V., et al. Characteristics of short-period internal waves in the Kara Sea inferred from satellite SAR data // Izvestiya, Atmospheric and Oceanic Physics. — 2015b. — Vol. 51, no. 9. — P. 1073–1087. — DOI:https://doi.org/10.1134/S0001433815090121.
16. Kozlov I. E., Mikhaylichenko T. V. Estimation of internal wave phase speed in the Arctic Ocean from sequential spaceborne SAR observations // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2021. — Vol. 18, no. 5. — P. 181–192. — DOI:https://doi.org/10.21046/2070-7401-2021-18-5-181-192.
17. Kozlov I. E., Zubkova E. V., Kudryavtsev V. N. Internal Solitary Waves in the Laptev Sea: First Results of Spaceborne SAR Observations // IEEE Geoscience and Remote Sensing Letters. — 2017. — Vol. 14, no. 11. — P. 2047–2051. — DOI:https://doi.org/10.1109/LGRS.2017.2749681.
18. Magalhaes J. M., Da Silva J. C. B. Internal Solitary Waves in the Andaman Sea: New Insights from SAR Imagery // Remote Sensing. — 2018. — Vol. 10, no. 6. — P. 861. — DOI:https://doi.org/10.3390/RS10060861.
19. Marchenko A. V., Morozov E. G., Kozlov I. E., et al. High-amplitude internal waves southeast of Spitsbergen // Continental Shelf Research. — 2021. — Sept. — Vol. 227. — P. 104523. — DOI:https://doi.org/10.1016/j.csr.2021.104523.
20. Morozov E. G., Marchenko A. V., Filchuk K. V., et al. Sea ice evolution and internal wave generation due to a tidal jet in a frozen sea // Applied Ocean Research. — 2019. — Vol. 87. — P. 179–191. — DOI:https://doi.org/10.1016/j.apor.2019.03.024.
21. Morozov E. G., Pisarev S. V. Internal waves and polynya formation in the Laptev Sea // Doklady Akademii Nauk. — 2004. — Vol. 398, no. 2. — P. 255–258.
22. Padman L., Dillon T. M. Turbulent mixing near the Yermak Plateau during the Coordinated Eastern Arctic Experiment // Journal of Geophysical Research: Oceans. — 1991. — Vol. 96, no. C3. — P. 4769–4782. — DOI:https://doi.org/10.1029/90JC02260.
23. Petrenko L. A., Kozlov I. E. Variability of the Marginal Ice Zone and Eddy Generation in Fram Strait and near Svalbard in Summer Based on Satellite Radar Observations // Physical Oceanography. — 2023. — Vol. 30, no. 5. — P. 594–611.
24. Petrusevich V. Y., Dmitrenko I. A., Kozlov I. E., et al. Tidally-generated internal waves in Southeast Hudson Bay // Continental Shelf Research. — 2018. — Vol. 167. — P. 65–76. — DOI:https://doi.org/10.1016/j.csr.2018.08.002.
25. Plueddemann A. J. Internal wave observations from the Arctic environmental drifting buoy // Journal of Geophysical Research: Oceans. — 1992. — Vol. 97, no. C8. — P. 12619–12638. — DOI:https://doi.org/10.1029/92JC01098.
26. Review of hydrometeorological processes in the Arctic Ocean. III quarter of 2018 (Quarterly information bulletin) / ed. by I. E. Frolov. — St. Petersburg : AARI, 2018.
27. Rippeth T. P., Lincoln B. J., Lenn Y.-D., et al. Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography // Nature Geoscience. — 2015. — Vol. 8, no. 3. — P. 191–194. — DOI:https://doi.org/10.1038/ngeo2350.
28. Rippeth T. P., Vlasenko V., Stashchuk N., et al. Tidal Conversion and Mixing Poleward of the Critical Latitude (an Arctic Case Study) // Geophysical Research Letters. — 2017. — Vol. 44, no. 24. — DOI:https://doi.org/10.1002/2017GL075310.
29. Sandven S., Johannessen O. M. High-frequency internal wave observations in the marginal ice zone // Journal of Geophysical Research: Oceans. — 1987. — Vol. 92, no. C7. — P. 6911–6920. — DOI:https://doi.org/10.1029/JC092iC07p06911.
30. Vlasenko V., Stashchuk N., Hutter K., et al. Nonlinear internal waves forced by tides near the critical latitude // Deep Sea Research Part I: Oceanographic Research Papers. — 2003. — Vol. 50, no. 3. — P. 317–338. — DOI:https://doi.org/10.1016/S0967-0637(03)00018-9.
31. Zhang Y., Hong M., Zhang Y., et al. Characteristics of Internal Solitary Waves in the Timor Sea Observed by SAR Satellite // Remote Sensing. — 2023. — Vol. 15, no. 11. — P. 2878. — DOI:https://doi.org/10.3390/rs15112878.
32. Zimin A. V., Kozlov I. E., Atadzhanova O. A., et al. Monitoring short-period internal waves in the White Sea // Izvestiya, Atmospheric and Oceanic Physics. — 2016. — Vol. 52, no. 9. — P. 951–960. — DOI:https://doi.org/10.1134/S0001433816090309.
33. Zubkova E. V., Kozlov I. E., Kudryavtsev V. N. Characteristics of short-period internal waves in the Greenland Sea based on satellite radar observations // Scientific Notes of the Russian State Hydrometeorological University. — 2016. — Vol. 45.