from 01.01.2021 to 01.01.2024
Immanuel Kant Baltic Federal University
Russian Federation
Immanuel Kant Baltic Federal University
Russian Federation
UDC 528.88
UDC 55
UDC 550.34
UDC 550.383
CSCSTI 89.57
CSCSTI 37.01
CSCSTI 37.15
CSCSTI 37.25
CSCSTI 37.31
CSCSTI 38.01
CSCSTI 36.00
CSCSTI 37.00
CSCSTI 38.00
CSCSTI 39.00
CSCSTI 52.00
Russian Classification of Professions by Education 05.06.01
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 63
BISAC SCI SCIENCE
In the context of high anthropogenic pressure and eutrophication of the waters in the southeastern Baltic Sea, it is important to monitor the plume of highly productive waters from the Kaliningrad Lagoon through the Baltic Strait. Seasonal and interannual variability in plume propagation was estimated using satellite data from January 2020 to October 2024, and was then compared with expeditionary salinity measurements. The plume area was largest during the flood period (February–March) and the summer period (June–July), when strong winds contributing to plume dissipation were absent. Analysis of wind conditions and plume movement direction showed that, in most cases, the plume propagates along the coast to the northeast towards Cape Taran, predominantly in response to southwest and southeast winds. In autumn, dominant westerly winds press the plume to the coast. The hydrophysical structure of the plume corroborates the findings derived from satellite data.
satellite monitoring, plume, wind conditions, south-eastern part of the Baltic Sea, the Kaliningrad Lagoon
1. Boskachev R. V., Chubarenko B. V. Analysis of the variability of hydrological characteristics at the mouth section of the Pregolya River (Southeast Baltic) // Hydrometeorology and Ecology. — 2022. — No. 69. — P. 644–674. — DOI:https://doi.org/10.33933/2713-3001-2022-69-644-674. — (In Russian).
2. Ginzburg A. I., Bulycheva E. V., Kostyanoy A. G., et al. On the role of vortices in the transport of oil pollution in the southeastern Baltic Sea (according to satellite monitoring) // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2015. — Vol. 12, no. 3. — P. 149–157. — EDN: https://elibrary.ru/UAFZCR ; (in Russian).
3. Gordeev V. V. River runoff into the ocean and its geochemical features. — Moscow : Nauka, 1983. — P. 152. — (In Russian).
4. ESIMO. Oceanographic Data Center of the Federal State Budgetary Institution VNIIGMI-MCD. — 1999. — URL: http://portal.esimo.ru/portal/ ; (visited on 05/12/2024) ; (in Russian).
5. Lavrova O. Yu., Krayushkin E. V., Soloviev D. M., et al. Influence of wind and hydrodynamic processes on propagation of the vistula lagoon waters into the Baltic sea // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2014. — Vol. 11, no. 4. — P. 76–99. — EDN: https://elibrary.ru/TJEKWP ; (in Russian).
6. Lavrova O. Yu., Mityagina M. I., Kostyanoy A. G. Satellite methods for detecting and monitoring marine zones of ecological risk. — Moscow : IKI RAS, 2016b. — P. 334. — EDN: https://elibrary.ru/XXTFLN ; (in Russian).
7. Lazarenko N. N., Mayevsky A. Hydrometeorological regime of the Vistula Lagoon. — Leningrad : Hydrometeoizdat, 1971. — P. 279. — (In Russian).
8. Lisitsyn A. R. A marginal filter of the oceans // Okeanologiâ. — 1994. — Vol. 34, no. 5. — P. 735–747. — EDN: https://elibrary.ru/YJGOHJ ; (in Russian).
9. Mityagina M. I., Lavrova O. Yu., Zhadanova P. D. The influence of hydrodynamic processes on the distribution of Vistula river waters in the gulf of Gdansk as seen in remote sensing data // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2024. — Vol. 21, no. 4. — P. 237–250. — DOI:https://doi.org/10.21046/2070-7401-2024-21-4-237-250. — (In Russian).
10. Nazirova K. R., Krayushkin E. V. Monitoring the spread of the Kaliningrad Bay waters in the Gulf of Gdansk (South-East Baltic) // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2021. — Vol. 18, no. 2. — P. 271–284. — DOI:https://doi.org/10.21046/2070-7401-2021-18-2-271-284. — (In Russian).
11. Raspisaniye pogody LLC. Weather in 240 countries of the world. Weather archive in Baltiysk. — 2004. — (visited on 06/13/2024) ; (in Russian). https://rp5.ru/.
12. Polunina Yu. Yu., Stont Zh. I. Wind effect on zooplankton distribution in the estuary of the Pregolya River (the Baltic Sea basin) after technogenic transformation of its riverbed // Marine Biological Journal. — 2022. — Vol. 7, no. 1. — P. 78–92. — DOI:https://doi.org/10.21072/mbj.2022.07.1.07. — (In Russian).
13. Stont J. I., Navrotskaya S. E., Chubarenko B. V. Long-Term Tendencies in Variations of Hydro-Meteorological Characteristics in Kaliningrad Oblast // Journal of Oceanological Research. — 2020. — Vol. 48, no. 1. — P. 45–61. — DOI:https://doi.org/10.29006/1564-2291.JOR-2020.48(1).3. — (In Russian).
14. Shchegolikhina M. S., Lavrova O. Yu. Monitoring of river and bay discharges with the help of satellite images of visible range // Herald of Tver State University. Series: Geography and Geoecology. — 2018. — No. 3. — P. 180–191. — DOI:https://doi.org/10.26456/2226-7719-2018-3-180-191. — EDN: https://elibrary.ru/YUNIRF ; (in Russian).
15. Bajkiewicz-Grabowska E., Zalewski M., Kobusińska M. E., et al. The seasonal structure of contributors to the discharge of the Vistula River to the Baltic Sea // Technology Wody. — 2019. — No. 6. — P. 8–15. — (In Polish).
16. Bashirova L., Sivkov V., Ulyanova M., et al. Climate and environmental monitoring of the Baltic Sea: General principles and approaches // Reliability: Theory & Applications. — 2023. — Vol. 18. — P. 164–171. — DOI:https://doi.org/10.24412/1932-2321-2023-575-164-171.
17. C3S. ERA5 hourly data on single levels from 1940 to present. — 2018. — DOI:https://doi.org/10.24381/cds.adbb2d47. — URL: https://cds.climate.copernicus.eu/doi/10.24381/cds.adbb2d47.
18. Chubarenko B., Zakirov R. Water Exchange of Nontidal Estuarine Coastal Vistula Lagoon with the Baltic Sea // Journal of Waterway, Port, Coastal, and Ocean Engineering. — 2021. — Vol. 147, no. 4. — DOI:https://doi.org/10.1061/(asce)ww.1943-5460.0000633.
19. Chubarenko B. V., Chubarenko I. P. The transport of Baltic water along the deep channel in the Gulf of Kaliningrad and its influence on fields of salinity and suspended solids // Proceedings of the Baltic Marine Science Conference 22-26 October 1996. — ICES Cooperative research report No. 257, 2003. — P. 151–156.
20. Dabuleviciene T., Vaiciute D., Kozlov I. E. Chlorophyll-a Variability during Upwelling Events in the South-Eastern Baltic Sea and in the Curonian Lagoon from Satellite Observations // Remote Sensing. — 2020. — Vol. 12, no. 21. — P. 3661. — DOI:https://doi.org/10.3390/rs12213661.
21. Emelyanov E. M. The Barrier Zones in the Ocean. — Springer-Verlag, 2005. — 632 p. — DOI:https://doi.org/10.1007/b137218.
22. Gasiunaite Z. R., Cardoso A. C., Heiskanen A. S., et al. Seasonality of coastal phytoplankton in the Baltic Sea: Influence of salinity and eutrophication // Estuarine, Coastal and Shelf Science. — 2005. — Vol. 65, no. 1/2. — P. 239–252. — DOI:https://doi.org/10.1016/j.ecss.2005.05.018.
23. Korobchenkova K. D., Aleksandrov S. V., Semenova A. S., et al. Influence of Hydrometeorological Conditions on the Plankton Distribution in the Estuary of the Pregolya River and the Coastal Part of the Baltic Sea // Oceanology. — 2023. — Vol. 63, S1. — P. 188–201. — DOI:https://doi.org/10.1134/s0001437023070068.
24. Kudryavtseva E. A., Aleksandrov S. V. Hydrological and Hydrochemical Underpinnings of Primary Production and Division of the Russian Sector in the Gdansk Basin of the Baltic Sea // Oceanology. — 2019. — Vol. 59, no. 1. — P. 49–65. — DOI:https://doi.org/10.1134/S0001437019010077.
25. Lavrova O., Krayushkin E., Golenko M., et al. Effect of Wind and Hydrographic Conditions on the Transport of Vistula Lagoon Waters Into the Baltic Sea: Results of a Combined Experiment // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. — 2016. — Vol. 9, no. 11. — P. 5193–5201. — DOI:https://doi.org/10.1109/JSTARS.2016.2580602.
26. Lihan T., Saitoh S. I., Iida T., et al. Satellite-measured temporal and spatial variability of the Tokachi River plume // Estuarine, Coastal and Shelf Science. — 2008. — Vol. 78, no. 2. — P. 237–249. — DOI:https://doi.org/10.1016/j.ecss.2007.12.001.
27. Osadchiev A., Sedakov R., Barymova A. Response of a Small River Plume on Wind Forcing // Frontiers in Marine Science. — 2021. — Vol. 8. — P. 809566. — DOI:https://doi.org/10.3389/fmars.2021.809566.
28. Osadchiev A. A., Zavialov P. O. Lagrangian model of a surface-advected river plume // Continental Shelf Research. — 2013. — Vol. 58. — P. 96–106. — DOI:https://doi.org/10.1016/j.csr.2013.03.010.
29. Saldias G. S., Sobarzo M., Largier J., et al. Seasonal variability of turbid river plumes off central Chile based on highresolution MODIS imagery // Remote Sensing of Environment. — 2012. — Vol. 123. — P. 220–233. — DOI:https://doi.org/10.1016/j.rse.2012.03.010.
30. Stont Z. I., Bobykina V. P., Ulyanova M. O. "Diving" cyclones and consequences of their impact on the coasts of the South-Eastern Baltic Sea // Russian Journal of Earth Sciences. — 2023. — DOI:https://doi.org/10.2205/2023ES000827.
31. Svendsen L., Gustafsson B., Sonesten L., et al. Input of nutrients by the seven biggest rivers in the Baltic Sea region in 1995-2017. — Baltic Sea Environment Proceedings No.178. HELCOM, 2021. — 24 p.
32. Thomas A., Weatherbee R. A. Satellite-measured temporal variability of the Columbia River plume // Remote Sensing of Environment. — 2006. — Vol. 100, no. 2. — P. 167–178. — DOI:https://doi.org/10.1016/j.rse.2005.10.018.
33. Vaiciute D., Bresciani M., Matta E., et al. Variability of bio-optical parameters of the SE Baltic Sea coastal waters based on in situ and satellite data // ESA Living Planet Symposium. — ESA, 2013. — P. 11.
34. Zu T., Wang D., Gan J., et al. On the role of wind and tide in generating variability of Pearl River plume during summer in a coupled wide estuary and shelf system // Journal of Marine Systems. — 2014. — Vol. 136. — P. 65–79. — DOI:https://doi.org/10.1016/j.jmarsys.2014.03.005.




