Fractal Characteristics of the Auroral Oval Structure According to the All-Sky Camera Data in Apatity for 2013–2020
Abstract and keywords
Abstract (English):
The spatial structure of polar auroras is described by the fractal dimension of glow fluctuations and its anisotropy from direction. The fractal dimension is estimated from the slope in the logarithmic axes of the spectrum in the range of 1.5–50 km, obtained through discrete wavelet transformation of the intensity fluctuation of the glow using Daubechies wavelets of order 5. The variability of the structures is characterized by the slope of the anisotropy variation spectrum over time. The statistics of these characteristics are presented according to the data of the ground-based all-sky camera of the Polar Geophysical Institute in Apatity for 2013–2020 and referenced to the position inside the auroral oval and the values of the geomagnetic field at Lovozero observatory. An algorithm for modeling the structure of polar auroras based on these characteristics is discussed.

Keywords:
aurora, substorm, particle precipitation, high-latitude ionosphere, scaling, fractal index, anisotropy, pulsating auroras, expansion phase
Text
Text (PDF): Read Download
References

1. Golovchanskaya I. V., Kozelov B. V. The range of Alfvénic turbulence scales in the topside auroral ionosphere // Cosmic Research. — 2016. — Vol. 54, no. 1. — P. 47–51. — DOI:https://doi.org/10.1134/s0010952516010093.

2. Kozelov B. V., Roldugin A. V. Fractal characteristics of the auroral oval structure based on experimental data // The 47th Annual Seminar «Physics of Auroral Phenomena». Abstracts. — Apatity : Polar Geophysical Institute, 2024. — P. 30. — (In Russian).

3. Suvorova Z. V., Mingalev I. V., Kozelov B. V. The Effect of Spatial Dimensions of Electron Precipitation Regions on the Passage of HF Signals // Proceedings of the 20th International Conference «Modern Problems of Remote Sensing of the Earth from Space». — Space Research Institute Russian Academy of Sciences, 2022. — DOI:https://doi.org/10.21046/20DZZconf-2022a. — (In Russian).

4. Hargreaves J. K. The Upper Atmosphere and Solar-Terrestrial Relations: An introduction to the aerospace environment. — Leningrad : Gidrometeoizdat, 1982. — (In Russian).

5. Abry P., Flandrin P., Taqqu M. S., et al. Wavelets for the Analysis, Estimation, and Synthesis of Scaling Data // Self-Similar Network Traffic and Performance Evaluation. — Wiley, 2000. — P. 39–88. — DOI:https://doi.org/10.1002/047120644x.ch2.

6. Akasofu S.-I. Polar and Magnetospheric Substorms. — Springer Netherlands, 1968. — DOI:https://doi.org/10.1007/978-94-010-3461-6.

7. Chang T. Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail // Physics of Plasmas. — 1999. — Vol. 6, no. 11. — P. 4137–4145. — DOI:https://doi.org/10.1063/1.873678.

8. Chernyshov A. A., Kozelov B. V., Mogilevsky M. M. Study of auroral ionosphere using percolation theory and fractal geometry // Journal of Atmospheric and Solar-Terrestrial Physics. — 2017. — Vol. 161. — P. 127–133. — DOI:https://doi.org/10.1016/j.jastp.2017.06.013.

9. Chernyshov A. A., Mogilevsky M. M., Kozelov B. V. Use of fractal approach to investigate ionospheric conductivity in the auroral zone // Journal of Geophysical Research: Space Physics. — 2013. — Vol. 118, no. 7. — P. 4108–4118. — DOI:https://doi.org/10.1002/jgra.50321.

10. Feldstein Y. I., Starkov G. V. Dynamics of auroral belt and polar geomagnetic disturbances // Planetary and Space Science. — 1967. — Vol. 15, no. 2. — P. 209–229. — DOI:https://doi.org/10.1016/0032-0633(67)90190-0.

11. Hardy D. A., Gussenhoven M. S., Holeman E. A statistical model of auroral electron precipitation // Journal of Geophysical Research: Space Physics. — 1985. — Vol. 90, A5. — P. 4229–4248. — DOI:https://doi.org/10.1029/ja090ia05p04229.

12. Kozelov B. V. Fractal approach to description of the auroral structure // Annales Geophysicae. — 2003. — Vol. 21, no. 9. — P. 2011–2023. — DOI:https://doi.org/10.5194/angeo-21-2011-2003.

13. Kozelov B. V., Golovchanskaya I. V. Derivation of aurora scaling parameters from ground-based imaging observations: Numerical tests // Journal of Geophysical Research: Space Physics. — 2010. — Vol. 115, A2. — DOI:https://doi.org/10.1029/2009ja014484.

14. Kozelov B. V., Pilgaev S. V., Borovkov L. P., et al. Multi-scale auroral observations in Apatity: winter 2010-2011 // Geoscientific Instrumentation, Methods and Data Systems. — 2012. — Vol. 1, no. 1. — P. 1–6. — DOI:https://doi.org/10.5194/gi-1-1-2012.

15. Kozelov B. V., Titova E. E. Conjunction Ground Triangulation of Auroras and Magnetospheric Processes Observed by the Van Allen Probe Satellite near 6 Re // Universe. — 2023. — Vol. 9, no. 8. — P. 353. — DOI:https://doi.org/10.3390/universe9080353.

16. Kozelov B. V., Uritsky V. M., Klimas A. J. Power law probability distributions of multiscale auroral dynamics from groundbased TV observations // Geophysical Research Letters. — 2004. — Vol. 31, no. 20. — DOI:https://doi.org/10.1029/2004GL020962.

17. Kozelov B. V., Vorobjev V. G., Titova E. E., et al. Diagnostics of the High-Latitude Ionosphere and Spatiotemporal Dynamics of Auroral Precipitations // Bulletin of the Russian Academy of Sciences: Physics. — 2024. — Vol. 88, no. 3. — P. 394–399. — DOI:https://doi.org/10.1134/S1062873823705573.

18. Milan S. E., Evans T. A., Hubert B. Average auroral configuration parameterized by geomagnetic activity and solar wind conditions // Annales Geophysicae. — 2010. — Vol. 28, no. 4. — P. 1003–1012. — DOI:https://doi.org/10.5194/angeo-28-1003-2010.

19. Newell P. T., Liou K., Zhang Y., et al. OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels // Space Weather. — 2014. — Vol. 12, no. 6. — P. 368–379. — DOI:https://doi.org/10.1002/2014SW001056.

20. Oguti T. Similarity between global auroral deformations in DAPP photographs and small scale deformations observed by a TV camera // Journal of Atmospheric and Terrestrial Physics. — 1975. — Vol. 37, no. 11. — P. 1413–1418. — DOI:https://doi.org/10.1016/0021-9169(75)90070-7.

21. Vorobjev V. G., Yagodkina O. I., Katkalov Yu. V. Auroral Precipitation Model and its applications to ionospheric and magnetospheric studies // Journal of Atmospheric and Solar-Terrestrial Physics. — 2013. — Vol. 102. — P. 157–171. — DOI:https://doi.org/10.1016/j.jastp.2013.05.007.

Login or Create
* Forgot password?