VAC 1.6 Науки о Земле и окружающей среде
UDK 004.021 Алгоритмы
UDK 55 Геология. Геологические и геофизические науки
UDK 550.34 Сейсмология
UDK 550.383 Главное магнитное поле Земли
GRNTI 37.31 Физика Земли
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.25 Океанология
GRNTI 38.01 Общие вопросы геологии
GRNTI 36.00 ГЕОДЕЗИЯ. КАРТОГРАФИЯ
GRNTI 37.00 ГЕОФИЗИКА
GRNTI 38.00 ГЕОЛОГИЯ
GRNTI 39.00 ГЕОГРАФИЯ
GRNTI 52.00 ГОРНОЕ ДЕЛО
OKSO 05.00.00 Науки о Земле
BBK 260 Земля в целом
BBK 26 Науки о Земле
TBK 632 Геофизика
TBK 63 Науки о Земле. Экология
BISAC SCI032000 Physics / Geophysics
BISAC SCI SCIENCE
The paper presents a description of an automated system and the algorithms implemented in it for detection, association and location of low-frequency acoustic events based on infrasound array data. An algorithm for detecting infrasound signals by calculating the cross-correlation function between records of individual sensors in a array is described. The implemented algorithm is optimized for working with arrays consisting of a large number of sensors, which allows minimizing the computational load on the monitoring system in near-real time mode. A procedure for recognizing long-term signals with a source position that may change over time, such as moving vehicles or snow avalanches, is described. The paper also describes algorithms for associating infrasound signals recorded by different arrays, as well as locating a signal source based on data from several infrasound arrays. The system is capable of simultaneously analyzing seismic and infrasound monitoring data and detecting pairs of two types of signals associated with a common source. The algorithm for such an association is also given in the paper. The described system of automatic detection and location of infrasound signals can be used for monitoring dangerous natural and man-made processes and phenomena in a mode close to real time.
Infrasound signal, infrasound group, detection, location, cross-correlation
1. Arrowsmith S. J., Hedlin M. A. H., Stump B., et al. Infrasonic Signals from Large Mining Explosions // Bulletin of the Seismological Society of America. — 2008. — Vol. 98, no. 2. — P. 768–777. — DOI:https://doi.org/10.1785/0120060241.
2. Asming V. E. and Asming S. V. The stream system of automatic detection, locationand discrimination PSDL // Modern methods of processing and interpretation of seismological data. Abstracts of theXVI International Seismological Workshop. — Obninsk : GS RAS, 2022. — P. 17. — EDN: https://elibrary.ru/MNHNFK.
3. Asming V. E., Baranov S. V., Vinogradov A. N., et al. Using an infrasonic method to monitor the destruction of glaciers in Arctic conditions // Acoustical Physics. — 2016. — Vol. 62, no. 5. — P. 583–592. — DOI:https://doi.org/10.1134/S1063771016040035.
4. Asming V. E., Fedorov A. and Prokudina A. The program LOS for interactive seismic and infrasonic data processing // Russian Journal of Seismology. — 2021. — Vol. 3, no. 1. — P. 27–40. — DOI:https://doi.org/10.35540/2686-7907.2021.1.02.
5. Cansi Y. and Le Pichon A. Infrasound Event Detection Using the Progressive Multi-Channel Correlation Algorithm // Handbook of Signal Processing in Acoustics. — Springer New York, 2008. — P. 1425–1435. — DOI:https://doi.org/10.1007/978-0-387-30441-0_77.
6. Ens T. A., Brown P. G., Edwards W. N., et al. Infrasound production by bolides: A global statistical study // Journal of Atmospheric and Solar-Terrestrial Physics. — 2012. — Vol. 80. — P. 208–229. — DOI:https://doi.org/10.1016/j.jastp.2012.01.018.
7. Gibbons S. J., Asming V., Eliasson L., et al. The European Arctic: A Laboratory for Seismoacoustic Studies // Seismological Research Letters. — 2015. — Vol. 86, no. 3. — P. 917–928. — DOI:https://doi.org/10.1785/0220140230.
8. Infrasound Monitoring for Atmospheric Studies: Challenges in Middle Atmosphere Dynamics and Societal Benefits / ed. by A. Le Pichon, E. Blanc and A. Hauchecorne. — Springer International Publishing, 2019. — DOI:https://doi.org/10.1007/978-3-319-75140-5.
9. Koch K. and Pilger Ch. Infrasound observations from the site of past underground nuclear explosions in North Korea // Geophysical Journal International. — 2018. — Vol. 216, no. 1. — P. 182–200. — DOI:https://doi.org/10.1093/gji/ggy381.
10. Le Pichon A., Blanc E., Drob D., et al. Infrasound monitoring of volcanoes to probe high-altitude winds // Journal of Geophysical Research: Atmospheres. — 2005. — Vol. 110, no. D13. — DOI:https://doi.org/10.1029/2004JD005587.
11. Liszka L. and Waldemark K. High Resolution Observations of Infrasound Generated by the Supersonic Flights of Concorde // Journal of Low Frequency Noise, Vibration and Active Control. — 1995. — Vol. 14, no. 4. — P. 181– 192. — DOI:https://doi.org/10.1177/026309239501400403.
12. Mutschlecner J. P. and Whitaker R. W. Infrasound from earthquakes // Journal of Geophysical Research: Atmospheres. — 2005. — Vol. 110, no. D1. — DOI:https://doi.org/10.1029/2004JD005067.
13. Ringdal F. and Kværna T. A multi-channel processing approach to real time network detection, phase association, and threshold monitoring // Bulletin of the Seismological Society of America. — 1989. — Vol. 79, no. 6. — P. 1927–1940. — DOI:https://doi.org/10.1785/BSSA0790061927.
14. Vinogradov Yu. A., Fedorov A. V., Baranov S. V., et al. Identification of iceberg-forming ice quakes from seismic and infrasound data // Ice and Snow. — 2021. — Vol. 61, no. 2. — P. 262–270. — DOI:https://doi.org/10.31857/S2076673421020087.