Sevastopol, Sevastopol, Russian Federation
VAK Russia 1.6
UDC 504.423
UDC 55
UDC 550.34
UDC 550.383
CSCSTI 89.57
CSCSTI 37.01
CSCSTI 37.15
CSCSTI 37.25
CSCSTI 37.31
CSCSTI 38.01
CSCSTI 36.00
CSCSTI 37.00
CSCSTI 38.00
CSCSTI 39.00
CSCSTI 52.00
Russian Classification of Professions by Education 05.06.01
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 6325
Russian Trade and Bibliographic Classification 63
BISAC SCI052000 Earth Sciences / Oceanography
BISAC SCI SCIENCE
A study of eddy generation in the northern Barents Sea was conducted using satellite radar data in conditions of a complete absence of ice and a weakened Polar Temperature Front in July 2022. Based on the analysis of 89 satellite radar images, 598 eddy formations were identified in ice-free water. 432 eddies had a cyclonic rotation type (72%), 166 had an anticyclonic rotation type (28%). The influence of the Polar Temperature Front, wind conditions, tidal currents and bottom relief variability on eddy generation was analyzed. It was found that the main cause of eddy formation in the Barents Sea is the instability of currents resulting from their interaction with bottom relief features.
Barents Sea, eddy generation, Polar Front, wind, tidal currents, bottom relief
1. Adlandsvik B. Wind-driven variations in the Atlantic inflow to the Barents Sea // ICES C.M./C. — 1989. — Vol. 18. — P. 1–13. DOI: https://doi.org/10.7868/S0205961413040076; EDN: https://elibrary.ru/QIWDAP
2. Adlandsvik B. and Loeng H. A study of the climatic system in the Barents Sea // Polar Research. — 1991. — Vol. 10, no. 1. — P. 45–50. — https://doi.org/10.3402/polar.v10i1.6726. DOI: https://doi.org/10.36038/2307-3497-2020-180-60-71; EDN: https://elibrary.ru/DFQIAG
3. Atadzhanova O. A., Kozlov I. E. and Konik A. A. Eddies over Spitsbergen Bank in the Barents Sea from Year-Round Sentinel-1 SAR Observations // Preprints.org. — 2024. — https://doi.org/10.20944/preprints202405.0235.v1. DOI: https://doi.org/10.21046/2070-7401-2020-17-5-191-201; EDN: https://elibrary.ru/WOLPVE
4. Atadzhanova O. A. and Zimin A. V. Analysis of the characteristics of the submesoscale eddy manifestations in the Barents, the Kara and the White Seas using satellite data // Fundamentalnaya i prikladnaya gidrofizika. — 2019. — Vol. 12, no. 3. — P. 36–45. — https://doi.org/10.7868/S2073667319030055.
5. Atadzhanova O. A., Zimin A. V., Romanenkov D. A., et al. Satellite Radar Observations of Small Eddies in the White, Barents and Kara Seas // Physical Oceanography. — 2017. — No. 2. — P. 75–83. — https://doi.org/10.22449/1573-160x-2017-2-75-83. EDN: https://elibrary.ru/XCRPLV
6. Atadzhanova O. A., Zimin A. V., Svergun E. I., et al. Submesoscale Eddy Structures and Frontal Dynamics in the Barents Sea // Physical Oceanography. — 2018. — Vol. 25, no. 3. — P. 220–228. — https://doi.org/10.22449/1573-160x-2018-3-220-228.
7. Barton B. I., Lenn Y.-D. and Lique C. Observed Atlantification of the Barents Sea Causes the Polar Front to Limit the Expansion of Winter Sea Ice // Journal of Physical Oceanography. — 2018. — Vol. 48, no. 8. — P. 1849–1866. — https://doi.org/10.1175/jpo-d-18-0003.1. EDN: https://elibrary.ru/WQEAPR
8. Feltham D., Tsamados M., Petty A., et al. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2015. — Vol. 373, no. 2052. — P. 20140167. — https://doi.org/10.1098/rsta.2014.0167. EDN: https://elibrary.ru/YPQTWC
9. Harris C. L. Water mass distribution and Polar Front structure in the Southwestern Barents Sea. — Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, 1996. — P. 106. — https://doi.org/10.1575/1912/5724. DOI: https://doi.org/10.29006/978-5-6045110-0-8/(13); EDN: https://elibrary.ru/QVHNQJ
10. Harris C. L., Plueddemann A. J. and Gawarkiewicz G. G. Water mass distribution and polar front structure in the western Barents Sea // Journal of Geophysical Research: Oceans. — 1998. — Vol. 103, no. C2. — P. 2905–2917. — https://doi.org/10.1029/97jc02790. DOI: https://doi.org/10.24411/2658-4255-2019-10073; EDN: https://elibrary.ru/YMCASA
11. Heukamp F. O., Aue L., Wang Q., et al. Cyclones modulate the control of the North Atlantic Oscillation on transports into the Barents Sea // Communications Earth & Environment. — 2023. — Vol. 4, no. 1. — P. 1–11. — https://doi.org/10.1038/s43247-023-00985-1.
12. Howard L. S. and Padman L. Arc2kmTM: Arctic 2 kilometer Tide Model, 2021. — 2021. — https://doi.org/10.18739/A2PV6B79W.
13. Ingvaldsen R. B. Width of the North Cape Current and location of the Polar Front in the western Barents Sea // Geophysical Research Letters. — 2005. — Vol. 32, no. 16. — P. L16603. — https://doi.org/10.1029/2005gl023440.
14. Ivanov V. V., Alekseev V. A., Alekseeva T. A., et al. Does Arctic Ocean Ice Cover Become Seasonal? // Issledovanie Zemli Iz Kosmosa. — 2013. — No. 4. — P. 50–65. — https://doi.org/10.7868/S0205961413040076. — (In Russian). DOI: https://doi.org/10.7868/S2073667319030055; EDN: https://elibrary.ru/GJYYMB
15. Ivshin V. A., Trofimov A. G. and Titov O. V. Barents Sea thermal frontal zones in 1960-2017: variability, weakening, shifting // ICES Journal of Marine Science. — 2019. — Vol. 76, Supplement_1. — P. i3–i9. — https://doi.org/10.1093/icesjms/fsz159. DOI: https://doi.org/10.22449/1573-160X-2017-2-75-83; EDN: https://elibrary.ru/LGXGQE
16. Ivshin V. A., Trofimov A. G. and Titov O. V. Barents Sea thermal frontal zones variability in 1960-2018 // Trudy VNIRO. — 2020. — Vol. 180. — P. 60–71. — https://doi.org/10.36038/2307-3497-2020-180-60-71. — (In Russian). DOI: https://doi.org/10.22449/1573-160X-2018-3-220-228; EDN: https://elibrary.ru/IHWWLM
17. Johannessen O. M. and Foster L. A. A note on the topographically controlled Oceanic Polar Front in the Barents Sea // Journal of Geophysical Research: Oceans. — 1978. — Vol. 83, no. C9. — P. 4567–4571. — https://doi.org/10.1029/jc083ic09p04567. DOI: https://doi.org/10.1175/JPO-D-18-0003.1; EDN: https://elibrary.ru/VJEJDS
18. Konik A. A. and Atadzhanova O. A. Variability of Decadal Horizontal Thermohaline Gradients on the Surface of the Barents Sea during Summer Season in 1993-2022 // Physical Oceanography. — 2024. — Vol. 31, no. 1. — P. 46–58. — EDN: https://elibrary.ru/QMQSWW. DOI: https://doi.org/10.1098/rsta.2014.0167; EDN: https://elibrary.ru/VETUHN
19. Konik A. A., Kozlov I. E., Zimin A. V., et al. Satellite observations of eddies and frontal zones in the Barents Sea during years of different ice cover properties // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. — 2020. — Vol. 17, no. 5. — P. 191–201. — https://doi.org/10.21046/2070-7401-2020-17-5-191-201. — (In Russian).
20. Kostiainoi A. G., Lebedev I. A., Novikov V. B., et al. On Eddy Formation in the Polar Frontal Zone of the Barents Sea // Trudy AARI. — 1992. — Vol. 426. — P. 19–32. — (In Russian).
21. Kowalik Z. and Proshutinsky A. Yu. Topographic enhancement of tidal motion in the western Barents Sea // Journal of Geophysical Research: Oceans. — 1995. — Vol. 100, no. C2. — P. 2613–2637. — https://doi.org/10.1029/94jc02838.
22. Kozlov I. E., Artamonova A. V., Manucharyan G. E., et al. Eddies in the Western Arctic Ocean From Spaceborne SAR Observations Over Open Ocean and Marginal Ice Zones // Journal of Geophysical Research: Oceans. — 2019. — Vol. 124, no. 9. — P. 6601–6616. — https://doi.org/10.1029/2019jc015113.
23. Loeng H. Features of the physical oceanographic conditions of the Barents Sea // Polar Research. — 1991. — Vol. 10, no. 1. — P. 5–18. — https://doi.org/10.3402/polar.v10i1.6723. DOI: https://doi.org/10.1029/2005GL023440; EDN: https://elibrary.ru/LRWMLB
24. Matishov G. G. Relief, Morphotectonics and Principal Features of the Barents Sea Shelf Development // OKeanologiya. — 1977. — Vol. 17, no. 3. — P. 490–496. — EDN: https://elibrary.ru/XCRPLV ; (in Russian). DOI: https://doi.org/10.1093/icesjms/fsz159; EDN: https://elibrary.ru/YWOXYJ
25. Morozov A. N., Pavlov V. K., Pavlova O. A., et al. Polar Frontal Zone of the Barents Sea Western Trough Based on the Direct Measurements in 2007 // Physical Oceanography. — 2017. — No. 2. — P. 36–50. — https://doi.org/10.22449/1573-160x-2017-2-36-50.
26. Ozhigin V. K., Ivshin V. A., Trofimov A. G., et al. The Barents Sea Water: structure, circulation, variability. — Murmansk : PINRO, 2016. — 216 p. — (In Russian). EDN: https://elibrary.ru/QMQSWW
27. Parsons A. R., Bourke R. H., Muench R. D., et al. The Barents Sea Polar Front in summer // Journal of Geophysical Research: Oceans. — 1996. — Vol. 101, no. C6. — P. 14201–14221. — https://doi.org/10.1029/96jc00119.
28. Petrenko L. A. and Kozlov I. E. Mesoscale and Submesoscale Features of Water Dynamics near the Svalbard Archipelago // Proceedings of the XXI International Conference "Current Problems in Remote Sensing of the Earth from Space" (Moscow, November 13-17, 2023). — M. : Space Research Institute of RAS, 2023a. — P. 239. — https://doi.org/10.21046/21DZZconf-2023a. — (In Russian). DOI: https://doi.org/10.1029/2019JC015113; EDN: https://elibrary.ru/EGTDJU
29. Petrenko L. A. and Kozlov I. E. Variability of the Marginal Ice Zone and Eddy Generation in Fram Strait and near Svalbard in Summer Based on Satellite Radar Observations // Physical Oceanography. — 2023b. — Vol. 30, no. 5. — P. 594–611. — EDN: https://elibrary.ru/QZZVDD.
30. Pisarev S. V. Review of the Barents sea hydrological conditions // The Barents Sea System. — M. : GEOS, 2021. — P. 153–166. — https://doi.org/10.29006/978-5-6045110-0-8/(13). — (In Russian). DOI: https://doi.org/10.22449/1573-160X-2017-2-36-50; EDN: https://elibrary.ru/JXFSOS
31. Review of Hydrometeorological Processes in the North Polar Region. 2022 / ed. by A. S. Makarov. — St. Petersburg : AARI, 2023. — P. 79. — (In Russian).
32. Robinson I. S. Tidal vorticity and residual circulation // Deep Sea Research Part A. Oceanographic Research Papers. — 1981. — Vol. 28, no. 3. — P. 195–212. — https://doi.org/10.1016/0198-0149(81)90062-5. EDN: https://elibrary.ru/QZZVDD
33. Yulin A. V., Vyazigina N. A. and Egorova E. S. Interannual and Seasonal Variability of Arctic Sea Ice Extent According to Satellite Observations // Russian Arctic. — 2019. — No. 7. — P. 28–40. — https://doi.org/10.24411/2658-4255-2019-10073. — (In Russian).
34. Zimmerman J. T. F. Topographic generation of residual circulation by oscillatory (tidal) currents // Geophysical & Astrophysical Fluid Dynamics. — 1978. — Vol. 11, no. 1. — P. 35–47. — https://doi.org/10.1080/03091927808242650.




