The Geomagnetically Induced Current Extremal Values Estimation Based on Baygazan Magnetical Station Data
Abstract and keywords
Abstract:
Based on the Baygazan magnetic station data, geomagnetically induced currents (GIC) in the 500 kV Sayano-Shushenskaya HPP (SSHPP) – Novokuznetsk substation power line were simulated during very strong and extreme magnetic storms (planetary geomagnetic index activity 𝐾𝑝 ≥ 8) for the period 2012–2024. The 1D Earth's crust conductivity distribution model is used for calculation. It is shown that, the GIC in the transformer neutral can reach 17 A for the SSHPP, and 8 A for the Novokuznetsk substation. The main sources of GIC are rapid high-amplitude bay-like disturbances (up to 17 A) and SSC (up to 5 A). A specificity has been found in the reaction of power line grounding nodes to geomagnetic activity caused by the network topology. A noticeable contribution of various pulsations classes to the GIC generation (up to 5 A) was noted.

Keywords:
Geomagnetically-induced current, South Siberia, simulation, bay-like disturbances, geomagnetic pulsation, SSC
Text
Text (PDF): Read Download
References

1. Bakyianov A. I., Betyev A. A., Gvozdarev A. Yu., et al. New Magnetic Station - Baygazan (Gorny Altai, Teletskoye Lake) // Deep Structure, Geodynamics, Thermal Field of the Earth, Interpretation of Geophysical Fields. — Yekaterinburg : UB RAS, 2011. — P. 29–32. — EDN: https://elibrary.ru/TYTQPL ; (in Russian).

2. Belakhovsky V. B., Pilipenko V. A., Sakharov Ya. A., et al. Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems // Izvestiya, Physics of the Solid Earth. — 2018. — Vol. 54, no. 1. — P. 52–65. — https://doi.org/10.1134/s1069351318010032.

3. Belakhovsky V. B., Pilipenko V. A., Sakharov Ya. A., et al. The Growth of Geomagnetically Induced Currents during CME and CIR Geomagnetic Storms in 2021 // Bulletin of the Russian Academy of Sciences: Physics. — 2023. — Vol. 87, no. 2. — P. 236–242. — https://doi.org/10.3103/s1062873822700988.

4. Belyavskiy V. V. i Goydina A. G. Trehmernaya geoelektricheskaya model' metallogenicheskih zon Kuznecko-Alatauskoy skladchatoy oblasti // Fizika Zemli. — 2012. — № 11/12. — S. 97—117. — EDN: https://elibrary.ru/PFEYCT.

5. Belyavsky V. V. and Lozovsky I. N. Fluid Saturation in the Lithosphere of the Altai-Sayan Folded Region according to Magnetotelluric Data // Russian Geology and Geophysics. — 2022. — Vol. 63, no. 1. — P. 85–97. — https://doi.org/10.2113/rgg20204211

6. Benkova N. P. and Shevnin A. D. Geomagnetic Fields and Their Variations // Electromagnetic Fields in the Biosphere. Vol. 1. — Moscow : Nauka, 1984. — P. 40–53. — (In Russian).

7. Vakhnina V. V., Kuvshinov A. A., Chernenko A. N., et al. Emission of magnetizing current harmonics of a block transformer in the stator winding circuit of a synchronous generator under geomagnetic disturbances // Voprosy elektrotekhnologii. — 2024. — No. 1. — P. 77–86. — EDN: https://elibrary.ru/NREKNB ; (in Russian).

8. Vorobev A. V., Pilipenko V. A., Sakharov Ya. A., et al. Statistical relationships between variations of the geomagnetic field, auroral electrojet, and geomagnetically induced currents // Solnechno-Zemnaya Fizika. — 2019. — Vol. 5, no. 1. — P. 48–58. — https://doi.org/10.12737/szf-51201905. — (In Russian).

9. Guglielmi A. V. and Troitskaya V. A. Geomagnetic Pulsations and Magnetosphere Diagnostics. — Moscow : Nauka, 1973. — (In Russian).

10. Gusev Yu. P., Lkhamdondog A. D., Monakov Yu. V., et al. Sign-constant current influence on flux linkage balance of power transformer’s primary and secondary winding // Relay Protection and Automation. — 2020. — No. 2. — P. 20–25. — EDN: https://elibrary.ru/CWOZQJ ; (in Russian).

11. Nechaev S. A. Guide for Stationary Geomagnetic Observations. — Irkutsk : V.B. Sochava Institute of Geography SB RAS, 2006. — EDN: https://elibrary.ru/QKGDNL ; (in Russian).

12. On Approval of the Scheme and Program for the Prospective Development of the Electric Power Industry of the Republic of Khakassia for 2023-2027. — Decree of the Government of the Republic of Khakassia dated April 27, 2022 No. 31-PP, 2022. — (In Russian)

13. Pilipenko V. A. Space weather impact on ground-based technological systems // Solnechno-Zemnaya Fizika. — 2021. — Vol. 7, no. 3. — P. 72–110. — https://doi.org/10.12737/szf-73202106. — (In Russian).

14. Potapov A. S., Tsemmed B. and Polyushkina T. N. Contribution of global Pc5 oscillations to the magnetic disturbance during geomagnetic storms // Solnechno-Zemnaya Fizika. — 2008. — Vol. 125, no. 12–1. — P. 142–147. — EDN: https://elibrary.ru/KKODTX ; (in Russian).

15. Selivanov V. N., Aksenovich T. V., Bilin V. A., et al. Database of geomagnetically induced currents in the main transmission line "Northern Transit" // Solnechno-Zemnaya Fizika. — 2023. — Vol. 9, no. 3. — P. 100–110. — https://doi.org/10.12737/szf-93202311. — (In Russian).

16. Sokolova O. N., Sakharov Ya. A., Gritsutenko S. S., et al. Utilization-based energy optimization energy storage // Proceedings of the Russian Academy of Sciences. Power Engineering. — 2019. — No. 5. — P. 33–52. — https://doi.org/10.1134/s0002331019050145. — (In Russian).

17. Scheme and Program "Development of the Electric Power Industry of Altai Krai 2022-2026". — Decree of the Governor of Altai Krai dated April 26, 2021 No. 64, 2021. — (In Russian).

18. Scheme and Program for the Prospective Development of the Electric Power Industry of Kemerovo Region - Kuzbass for 2021-2025. — Approved by the Order of the Governor of Kemerovo Region - Kuzbass dated April 30, 2020 No. 58-rg, 2020. — (In Russian).

19. Scheme and Program for the Prospective Development of the Electric Power Industry of Krasnoyarsk Krai for the Period 2023-2027. — Appendix to the Order of the Governor of Krasnoyarsk Krai dated April 29, 2022 No. 246-rg, 2022. — (In Russian).

20. Uchaikin E. O., Kudin D. V. and Gvozdarev A. Yu. Design of induction coil magnetometer based on INT-1 sensor and results of monitoring of magnetical station "Baygazan" // Interaction of Fields and Radiation with Matter. — Irkutsk : Institute of Solar-Terrestrial Physics SB RAS, 2015. — P. 267–268. — EDN: https://elibrary.ru/TUAHEN ; (in Russian).

21. Yagova N. V., Sakharov Ya. A., Pilipenko V. A., et al. Long-period geomagnetic pulsations as an element of the space weather influence on technologocal systems // Solnechno-Zemnaya Fizika. — 2024. — Vol. 10, no. 3. — P. 146–156. — https://doi.org/10.12737/szf-103202415. — (In Russian).

22. Albert D., Schachinger P., Bailey R. L., et al. Analysis of Long-Term GIC Measurements in Transformers in Austria // Space Weather. — 2022. — Vol. 20, no. 1. — e2021SW002912. — https://doi.org/10.1029/2021sw002912.

23. Alekseev D., Kuvshinov A. and Palshin N. Compilation of 3D global conductivity model of the Earth for space weather applications // Earth, Planets and Space. — 2015. — Vol. 67, no. 1. — https://doi.org/10.1186/s40623-015-0272-5.

24. Apatenkov S. V., Sergeev V. A., Pirjola R., et al. Evaluation of the geometry of ionospheric current systems related to rapid geomagnetic variations // Annales Geophysicae. — 2004. — Vol. 22, no. 1. — P. 63–72. — https://doi.org/10.5194/angeo-22-63-2004.

25. Belakhovsky V., Pilipenko V., Engebretson M., et al. Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines // Journal of Space Weather and Space Climate. — 2019a. — Vol. 9. — A18. — https://doi.org/10.1051/swsc/2019015.

26. Belakhovsky V. B., Pilipenko V. A., Sakharov Ya. A., et al. Substorm influence on GIC registered in electric power lines: the magnetic storm of 7-8 September 2017 // Physics of Auroral Phenomena. — 2019b. — Vol. 42, no. 1. — P. 5–12. — https://doi.org/10.25702/KSC.2588-0039.2019.42.9-12.

27. Bolduc L. G. GIC observations and studies in the Hydro-Québec power system // Journal of Atmospheric and SolarTerrestrial Physics. — 2002. — Vol. 64, no. 16. — P. 1793–1802. — https://doi.org/10.1016/s1364-6826(02)00128-1.

28. Boteler D. H. and Pirjola R. J. Numerical Calculation of Geoelectric Fields That Affect Critical Infrastructure // International Journal of Geosciences. — 2019. — Vol. 10. — P. 930–949. — https://doi.org/10.4236/ijg.2019.1010053.

29. Caraballo R., González-Esparza J. A., Pacheco C. R., et al. Improved Model for GIC Calculation in the Mexican Power Grid // Space Weather. — 2023. — Vol. 21, no. 10. — https://doi.org/10.1029/2022sw003202.

30. Cordell D., Mann I. R., Parry H., et al. Modeling Geomagnetically Induced Currents in the Alberta Power Network: Comparison and Validation Using Hall Probe Measurements During a Magnetic Storm // Space Weather. — 2024. — Vol. 22, no. 4. — e2023SW003813. — https://doi.org/10.1029/2023sw003813.

31. De Michelis P. and Consolini G. Unveiling the Gannon Storm: How Ground-Based Magnetometers Mapped Its Global Impact // Space Weather. — 2025. — Vol. 23, no. 6. — e2025SW004350. — https://doi.org/10.1029/2025sw004350.

32. Despirak I., Setsko P., Lubchich A., et al. Geomagnetically induced currents (GICs) during strong geomagnetic activity (storms, substorms, and magnetic pulsations) on 23-24 April 2023 // Journal of Atmospheric and Solar-Terrestrial Physics. — 2024. — Vol. 261. — P. 106293. — https://doi.org/10.1016/j.jastp.2024.106293.

33. Espinosa K. V., Padilha A. L., Alves L. R., et al. Estimating Geomagnetically Induced Currents in Southern Brazil Using 3-D Earth Resistivity Model // Space Weather. — 2023. — Vol. 21, no. 4. — e2022SW003166. — https://doi.org/10.1029/2022SW003166.

34. Gaunt C. T. and Coetzee G. Transformer failures in regions incorrectly considered to have low GIC-risk // 2007 IEEE Lausanne Power Tech. — Lausanne, Switzerland : IEEE, 2007. — P. 807–812. — https://doi.org/10.1109/pct.2007.4538419.

35. Gil A., Berendt-Marchel M., Modzelewska R., et al. Review of Geomagnetically Induced Current Proxies in Mid-Latitude European Countries // Energies. — 2023. — Vol. 16, no. 21. — P. 7406. — https://doi.org/10.3390/en16217406.

36. Gonzalez-Esparza J. A., Sanchez-Garcia E., Sergeeva M., et al. The Mother’s Day Geomagnetic Storm on 10 May 2024: Aurora Observations and Low Latitude Space Weather Effects in Mexico // Space Weather. — 2024. — Vol. 22, no. 11. — e2024SW004111. — https://doi.org/10.1029/2024sw004111.

37. Gvozdarev A. Yu., Kazantzeva O. V., Uchaikin E. O., et al. Estimation of geomagnetically induced currents in the Altai Republic power system according to the Baygazan magnetic station data // Vestnik KRAUNC. Fiziko-Matematicheskie Nauki. — 2023. — Vol. 45, no. 4. — P. 190–200. — https://doi.org/10.26117/2079-6641-2023-45-4-190-200.

38. Hartinger M. D., Shi X., Rodger C. J., et al. Determining ULF Wave Contributions to Geomagnetically Induced Currents: The Important Role of Sampling Rate // Space Weather. — 2023. — Vol. 21, no. 5. — E2022SW003340. — https://doi.org/10.1029/2022sw003340.

39. Hejda P. and Bochníček J. Geomagnetically induced pipe-to-soil voltages in the Czech oil pipelines during OctoberNovember 2003 // Annales Geophysicae. — 2005. — Vol. 23, no. 9. — P. 3089–3093. — https://doi.org/10.5194/angeo23-3089-2005.

40. Heyns M. J., Lotz S. I. and Gaunt C. T. Geomagnetic Pulsations Driving Geomagnetically Induced Currents // Space Weather. — 2021. — Vol. 19, no. 2. — e2020SW002557. — https://doi.org/10.1029/2020sw002557.

41. Hübert J., Beggan C. D., Richardson G. S., et al. Validating a UK Geomagnetically Induced Current Model Using Differential Magnetometer Measurements // Space Weather. — 2024. — Vol. 22, no. 2. — e2023SW003769. — https://doi.org/10.1029/2023sw003769.

42. Kappenman J. G. An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun-Earth connection events of 29-31 October 2003 and a comparative evaluation with other contemporary storms // Space Weather. — 2005. — Vol. 3, no. 8. — S08C01. — https://doi.org/10.1029/2004sw000128.

43. Liu T. Z., Shi X., Hartinger M. D., et al. Global Observations of Geomagnetically Induced Currents Caused by an Extremely Intense Density Pulse During a Coronal Mass Ejection // Space Weather. — 2024. — Vol. 22, no. 10. — e2024SW003993. — https://doi.org/10.1029/2024sw003993.

44. Mac Manus D. H., Rodger C. J., Dalzell M., et al. Long-term geomagnetically induced current observations in New Zealand: Earth return corrections and geomagnetic field driver // Space Weather. — 2017. — Vol. 15, no. 8. — P. 1020–1038. — https://doi.org/10.1002/2017sw001635.

45. Mac Manus D. H., Rodger C. J., Renton A., et al. Implementing Geomagnetically Induced Currents Mitigation During the May 2024 "Gannon" G5 Storm: Research Informed Response by the New Zealand Power Network // Space Weather. — 2025. — Vol. 23, no. 6. — e2025SW004388. — https://doi.org/10.1029/2025sw004388.

46. Marshall R. A., Dalzell M., Waters C. L., et al. Geomagnetically induced currents in the New Zealand power network // Space Weather. — 2012. — Vol. 10, no. 8. — S08003. — https://doi.org/10.1029/2012sw000806.

47. Marshall R. A., Gorniak H., Van Der Walt T., et al. Observations of geomagnetically induced currents in the Australian power network // Space Weather. — 2013. — Vol. 11, no. 1. — P. 6–16. — https://doi.org/10.1029/2012sw000849.

48. Matandirotya E., Cilliers P. J. and Van Zyl R. R. Modeling geomagnetically induced currents in the South African power transmission network using the finite element method // Space Weather. — 2015. — Vol. 13, no. 3. — P. 185–195. — https://doi.org/10.1002/2014sw001135.

49. Sivokon V. P. A New Method for Detecting Geomagnetically Induced Currents // Russian Electrical Engineering. — 2021. — Vol. 92, no. 11. — P. 685–690. — https://doi.org/10.3103/s1068371221110146.

50. Švanda M., Smičková A. and Výboštoková T. Modelling of geomagnetically induced currents in the Czech transmission grid // Earth, Planets and Space. — 2021. — Vol. 73, no. 1. — P. 229. — https://doi.org/10.1186/s40623-021-01555-5.

51. Trivedi N. B., Vitorello I., Kabata W., et al. Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: A case study // Space Weather. — 2007. — Vol. 5, no. 4. — S04004. — https://doi.org/10.1029/2006sw000282.

52. Uchaikin E. O. and Gvozdarev A. Organization of Monitoring of Even Harmonics Amplitudes in the Electricity Networks of the Altai Republic as an Indicator of Space Weather // 2023 IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering (APEIE). — Novosibirsk : IEEE, 2023. — P. 450–454. — https://doi.org/10.1109/apeie59731.2023.10347597.

53. Watari S., Nakamura S. and Ebihara Y. Measurement of geomagnetically induced current (GIC) around Tokyo, Japan // Earth, Planets and Space. — 2021. — Vol. 73, no. 1. — P. 102. — https://doi.org/10.1186/s40623-021-01422-3.

54. Wik M., Viljanen A., Pirjola R., et al. Calculation of geomagnetically induced currents in the 400 kV power grid in southern Sweden // Space Weather. — 2008. — Vol. 6, no. 7. — S07005. — https://doi.org/10.1029/2007sw000343.

55. Yagova N. V., Pilipenko V. A., Sakharov Ya. A., et al. Spatial scale of geomagnetic Pc5/Pi3 pulsations as a factor of their efficiency in generation of geomagnetically induced currents // Earth, Planets and Space. — 2021. — Vol. 73, no. 1. — https://doi.org/10.1186/s40623-021-01407-2.

56. Zhang J. J., Wang C., Sun T. R., et al. GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation // Space Weather. — 2015. — Vol. 13, no. 10. — P. 643–655. — https://doi.org/10.1002/2015sw001263.


Login or Create
* Forgot password?