from 01.01.2022 until now
Paratunka, Kamchatka, Russian Federation
Gorno-Altaysk, Gorno-Altaysk, Russian Federation
UDC 55
UDC 550.34
UDC 550.383
CSCSTI 37.01
CSCSTI 37.15
CSCSTI 37.25
CSCSTI 37.31
CSCSTI 38.01
CSCSTI 36.00
CSCSTI 37.00
CSCSTI 38.00
CSCSTI 39.00
CSCSTI 52.00
Russian Classification of Professions by Education 05.00.00
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 63
BISAC SCI SCIENCE
Based on the Baygazan magnetic station data, geomagnetically induced currents (GIC) in the 500 kV Sayano-Shushenskaya HPP (SSHPP) – Novokuznetsk substation power line were simulated during very strong and extreme magnetic storms (planetary geomagnetic index activity 𝐾𝑝 ≥ 8) for the period 2012–2024. The 1D Earth's crust conductivity distribution model is used for calculation. It is shown that, the GIC in the transformer neutral can reach 17 A for the SSHPP, and 8 A for the Novokuznetsk substation. The main sources of GIC are rapid high-amplitude bay-like disturbances (up to 17 A) and SSC (up to 5 A). A specificity has been found in the reaction of power line grounding nodes to geomagnetic activity caused by the network topology. A noticeable contribution of various pulsations classes to the GIC generation (up to 5 A) was noted.
Geomagnetically-induced current, South Siberia, simulation, bay-like disturbances, geomagnetic pulsation, SSC
1. Bakyianov A. I., Betyev A. A., Gvozdarev A. Yu., et al. New Magnetic Station - Baygazan (Gorny Altai, Teletskoye Lake) // Deep Structure, Geodynamics, Thermal Field of the Earth, Interpretation of Geophysical Fields. — Yekaterinburg : UB RAS, 2011. — P. 29–32. — EDN: https://elibrary.ru/TYTQPL ; (in Russian).
2. Belakhovsky V. B., Pilipenko V. A., Sakharov Ya. A., et al. Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems // Izvestiya, Physics of the Solid Earth. — 2018. — Vol. 54, no. 1. — P. 52–65. — https://doi.org/10.1134/s1069351318010032.
3. Belakhovsky V. B., Pilipenko V. A., Sakharov Ya. A., et al. The Growth of Geomagnetically Induced Currents during CME and CIR Geomagnetic Storms in 2021 // Bulletin of the Russian Academy of Sciences: Physics. — 2023. — Vol. 87, no. 2. — P. 236–242. — https://doi.org/10.3103/s1062873822700988.
4. Belyavskiy V. V. i Goydina A. G. Trehmernaya geoelektricheskaya model' metallogenicheskih zon Kuznecko-Alatauskoy skladchatoy oblasti // Fizika Zemli. — 2012. — № 11/12. — S. 97—117. — EDN: https://elibrary.ru/PFEYCT.
5. Belyavsky V. V. and Lozovsky I. N. Fluid Saturation in the Lithosphere of the Altai-Sayan Folded Region according to Magnetotelluric Data // Russian Geology and Geophysics. — 2022. — Vol. 63, no. 1. — P. 85–97. — https://doi.org/10.2113/rgg20204211
6. Benkova N. P. and Shevnin A. D. Geomagnetic Fields and Their Variations // Electromagnetic Fields in the Biosphere. Vol. 1. — Moscow : Nauka, 1984. — P. 40–53. — (In Russian).
7. Vakhnina V. V., Kuvshinov A. A., Chernenko A. N., et al. Emission of magnetizing current harmonics of a block transformer in the stator winding circuit of a synchronous generator under geomagnetic disturbances // Voprosy elektrotekhnologii. — 2024. — No. 1. — P. 77–86. — EDN: https://elibrary.ru/NREKNB ; (in Russian).
8. Vorobev A. V., Pilipenko V. A., Sakharov Ya. A., et al. Statistical relationships between variations of the geomagnetic field, auroral electrojet, and geomagnetically induced currents // Solnechno-Zemnaya Fizika. — 2019. — Vol. 5, no. 1. — P. 48–58. — https://doi.org/10.12737/szf-51201905. — (In Russian).
9. Guglielmi A. V. and Troitskaya V. A. Geomagnetic Pulsations and Magnetosphere Diagnostics. — Moscow : Nauka, 1973. — (In Russian).
10. Gusev Yu. P., Lkhamdondog A. D., Monakov Yu. V., et al. Sign-constant current influence on flux linkage balance of power transformer’s primary and secondary winding // Relay Protection and Automation. — 2020. — No. 2. — P. 20–25. — EDN: https://elibrary.ru/CWOZQJ ; (in Russian).
11. Nechaev S. A. Guide for Stationary Geomagnetic Observations. — Irkutsk : V.B. Sochava Institute of Geography SB RAS, 2006. — EDN: https://elibrary.ru/QKGDNL ; (in Russian).
12. On Approval of the Scheme and Program for the Prospective Development of the Electric Power Industry of the Republic of Khakassia for 2023-2027. — Decree of the Government of the Republic of Khakassia dated April 27, 2022 No. 31-PP, 2022. — (In Russian)
13. Pilipenko V. A. Space weather impact on ground-based technological systems // Solnechno-Zemnaya Fizika. — 2021. — Vol. 7, no. 3. — P. 72–110. — https://doi.org/10.12737/szf-73202106. — (In Russian).
14. Potapov A. S., Tsemmed B. and Polyushkina T. N. Contribution of global Pc5 oscillations to the magnetic disturbance during geomagnetic storms // Solnechno-Zemnaya Fizika. — 2008. — Vol. 125, no. 12–1. — P. 142–147. — EDN: https://elibrary.ru/KKODTX ; (in Russian).
15. Selivanov V. N., Aksenovich T. V., Bilin V. A., et al. Database of geomagnetically induced currents in the main transmission line "Northern Transit" // Solnechno-Zemnaya Fizika. — 2023. — Vol. 9, no. 3. — P. 100–110. — https://doi.org/10.12737/szf-93202311. — (In Russian).
16. Sokolova O. N., Sakharov Ya. A., Gritsutenko S. S., et al. Utilization-based energy optimization energy storage // Proceedings of the Russian Academy of Sciences. Power Engineering. — 2019. — No. 5. — P. 33–52. — https://doi.org/10.1134/s0002331019050145. — (In Russian).
17. Scheme and Program "Development of the Electric Power Industry of Altai Krai 2022-2026". — Decree of the Governor of Altai Krai dated April 26, 2021 No. 64, 2021. — (In Russian).
18. Scheme and Program for the Prospective Development of the Electric Power Industry of Kemerovo Region - Kuzbass for 2021-2025. — Approved by the Order of the Governor of Kemerovo Region - Kuzbass dated April 30, 2020 No. 58-rg, 2020. — (In Russian).
19. Scheme and Program for the Prospective Development of the Electric Power Industry of Krasnoyarsk Krai for the Period 2023-2027. — Appendix to the Order of the Governor of Krasnoyarsk Krai dated April 29, 2022 No. 246-rg, 2022. — (In Russian).
20. Uchaikin E. O., Kudin D. V. and Gvozdarev A. Yu. Design of induction coil magnetometer based on INT-1 sensor and results of monitoring of magnetical station "Baygazan" // Interaction of Fields and Radiation with Matter. — Irkutsk : Institute of Solar-Terrestrial Physics SB RAS, 2015. — P. 267–268. — EDN: https://elibrary.ru/TUAHEN ; (in Russian).
21. Yagova N. V., Sakharov Ya. A., Pilipenko V. A., et al. Long-period geomagnetic pulsations as an element of the space weather influence on technologocal systems // Solnechno-Zemnaya Fizika. — 2024. — Vol. 10, no. 3. — P. 146–156. — https://doi.org/10.12737/szf-103202415. — (In Russian).
22. Albert D., Schachinger P., Bailey R. L., et al. Analysis of Long-Term GIC Measurements in Transformers in Austria // Space Weather. — 2022. — Vol. 20, no. 1. — e2021SW002912. — https://doi.org/10.1029/2021sw002912.
23. Alekseev D., Kuvshinov A. and Palshin N. Compilation of 3D global conductivity model of the Earth for space weather applications // Earth, Planets and Space. — 2015. — Vol. 67, no. 1. — https://doi.org/10.1186/s40623-015-0272-5.
24. Apatenkov S. V., Sergeev V. A., Pirjola R., et al. Evaluation of the geometry of ionospheric current systems related to rapid geomagnetic variations // Annales Geophysicae. — 2004. — Vol. 22, no. 1. — P. 63–72. — https://doi.org/10.5194/angeo-22-63-2004.
25. Belakhovsky V., Pilipenko V., Engebretson M., et al. Impulsive disturbances of the geomagnetic field as a cause of induced currents of electric power lines // Journal of Space Weather and Space Climate. — 2019a. — Vol. 9. — A18. — https://doi.org/10.1051/swsc/2019015.
26. Belakhovsky V. B., Pilipenko V. A., Sakharov Ya. A., et al. Substorm influence on GIC registered in electric power lines: the magnetic storm of 7-8 September 2017 // Physics of Auroral Phenomena. — 2019b. — Vol. 42, no. 1. — P. 5–12. — https://doi.org/10.25702/KSC.2588-0039.2019.42.9-12.
27. Bolduc L. G. GIC observations and studies in the Hydro-Québec power system // Journal of Atmospheric and SolarTerrestrial Physics. — 2002. — Vol. 64, no. 16. — P. 1793–1802. — https://doi.org/10.1016/s1364-6826(02)00128-1.
28. Boteler D. H. and Pirjola R. J. Numerical Calculation of Geoelectric Fields That Affect Critical Infrastructure // International Journal of Geosciences. — 2019. — Vol. 10. — P. 930–949. — https://doi.org/10.4236/ijg.2019.1010053.
29. Caraballo R., González-Esparza J. A., Pacheco C. R., et al. Improved Model for GIC Calculation in the Mexican Power Grid // Space Weather. — 2023. — Vol. 21, no. 10. — https://doi.org/10.1029/2022sw003202.
30. Cordell D., Mann I. R., Parry H., et al. Modeling Geomagnetically Induced Currents in the Alberta Power Network: Comparison and Validation Using Hall Probe Measurements During a Magnetic Storm // Space Weather. — 2024. — Vol. 22, no. 4. — e2023SW003813. — https://doi.org/10.1029/2023sw003813.
31. De Michelis P. and Consolini G. Unveiling the Gannon Storm: How Ground-Based Magnetometers Mapped Its Global Impact // Space Weather. — 2025. — Vol. 23, no. 6. — e2025SW004350. — https://doi.org/10.1029/2025sw004350.
32. Despirak I., Setsko P., Lubchich A., et al. Geomagnetically induced currents (GICs) during strong geomagnetic activity (storms, substorms, and magnetic pulsations) on 23-24 April 2023 // Journal of Atmospheric and Solar-Terrestrial Physics. — 2024. — Vol. 261. — P. 106293. — https://doi.org/10.1016/j.jastp.2024.106293.
33. Espinosa K. V., Padilha A. L., Alves L. R., et al. Estimating Geomagnetically Induced Currents in Southern Brazil Using 3-D Earth Resistivity Model // Space Weather. — 2023. — Vol. 21, no. 4. — e2022SW003166. — https://doi.org/10.1029/2022SW003166.
34. Gaunt C. T. and Coetzee G. Transformer failures in regions incorrectly considered to have low GIC-risk // 2007 IEEE Lausanne Power Tech. — Lausanne, Switzerland : IEEE, 2007. — P. 807–812. — https://doi.org/10.1109/pct.2007.4538419.
35. Gil A., Berendt-Marchel M., Modzelewska R., et al. Review of Geomagnetically Induced Current Proxies in Mid-Latitude European Countries // Energies. — 2023. — Vol. 16, no. 21. — P. 7406. — https://doi.org/10.3390/en16217406.
36. Gonzalez-Esparza J. A., Sanchez-Garcia E., Sergeeva M., et al. The Mother’s Day Geomagnetic Storm on 10 May 2024: Aurora Observations and Low Latitude Space Weather Effects in Mexico // Space Weather. — 2024. — Vol. 22, no. 11. — e2024SW004111. — https://doi.org/10.1029/2024sw004111.
37. Gvozdarev A. Yu., Kazantzeva O. V., Uchaikin E. O., et al. Estimation of geomagnetically induced currents in the Altai Republic power system according to the Baygazan magnetic station data // Vestnik KRAUNC. Fiziko-Matematicheskie Nauki. — 2023. — Vol. 45, no. 4. — P. 190–200. — https://doi.org/10.26117/2079-6641-2023-45-4-190-200.
38. Hartinger M. D., Shi X., Rodger C. J., et al. Determining ULF Wave Contributions to Geomagnetically Induced Currents: The Important Role of Sampling Rate // Space Weather. — 2023. — Vol. 21, no. 5. — E2022SW003340. — https://doi.org/10.1029/2022sw003340.
39. Hejda P. and Bochníček J. Geomagnetically induced pipe-to-soil voltages in the Czech oil pipelines during OctoberNovember 2003 // Annales Geophysicae. — 2005. — Vol. 23, no. 9. — P. 3089–3093. — https://doi.org/10.5194/angeo23-3089-2005.
40. Heyns M. J., Lotz S. I. and Gaunt C. T. Geomagnetic Pulsations Driving Geomagnetically Induced Currents // Space Weather. — 2021. — Vol. 19, no. 2. — e2020SW002557. — https://doi.org/10.1029/2020sw002557.
41. Hübert J., Beggan C. D., Richardson G. S., et al. Validating a UK Geomagnetically Induced Current Model Using Differential Magnetometer Measurements // Space Weather. — 2024. — Vol. 22, no. 2. — e2023SW003769. — https://doi.org/10.1029/2023sw003769.
42. Kappenman J. G. An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun-Earth connection events of 29-31 October 2003 and a comparative evaluation with other contemporary storms // Space Weather. — 2005. — Vol. 3, no. 8. — S08C01. — https://doi.org/10.1029/2004sw000128.
43. Liu T. Z., Shi X., Hartinger M. D., et al. Global Observations of Geomagnetically Induced Currents Caused by an Extremely Intense Density Pulse During a Coronal Mass Ejection // Space Weather. — 2024. — Vol. 22, no. 10. — e2024SW003993. — https://doi.org/10.1029/2024sw003993.
44. Mac Manus D. H., Rodger C. J., Dalzell M., et al. Long-term geomagnetically induced current observations in New Zealand: Earth return corrections and geomagnetic field driver // Space Weather. — 2017. — Vol. 15, no. 8. — P. 1020–1038. — https://doi.org/10.1002/2017sw001635.
45. Mac Manus D. H., Rodger C. J., Renton A., et al. Implementing Geomagnetically Induced Currents Mitigation During the May 2024 "Gannon" G5 Storm: Research Informed Response by the New Zealand Power Network // Space Weather. — 2025. — Vol. 23, no. 6. — e2025SW004388. — https://doi.org/10.1029/2025sw004388.
46. Marshall R. A., Dalzell M., Waters C. L., et al. Geomagnetically induced currents in the New Zealand power network // Space Weather. — 2012. — Vol. 10, no. 8. — S08003. — https://doi.org/10.1029/2012sw000806.
47. Marshall R. A., Gorniak H., Van Der Walt T., et al. Observations of geomagnetically induced currents in the Australian power network // Space Weather. — 2013. — Vol. 11, no. 1. — P. 6–16. — https://doi.org/10.1029/2012sw000849.
48. Matandirotya E., Cilliers P. J. and Van Zyl R. R. Modeling geomagnetically induced currents in the South African power transmission network using the finite element method // Space Weather. — 2015. — Vol. 13, no. 3. — P. 185–195. — https://doi.org/10.1002/2014sw001135.
49. Sivokon V. P. A New Method for Detecting Geomagnetically Induced Currents // Russian Electrical Engineering. — 2021. — Vol. 92, no. 11. — P. 685–690. — https://doi.org/10.3103/s1068371221110146.
50. Švanda M., Smičková A. and Výboštoková T. Modelling of geomagnetically induced currents in the Czech transmission grid // Earth, Planets and Space. — 2021. — Vol. 73, no. 1. — P. 229. — https://doi.org/10.1186/s40623-021-01555-5.
51. Trivedi N. B., Vitorello I., Kabata W., et al. Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: A case study // Space Weather. — 2007. — Vol. 5, no. 4. — S04004. — https://doi.org/10.1029/2006sw000282.
52. Uchaikin E. O. and Gvozdarev A. Organization of Monitoring of Even Harmonics Amplitudes in the Electricity Networks of the Altai Republic as an Indicator of Space Weather // 2023 IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering (APEIE). — Novosibirsk : IEEE, 2023. — P. 450–454. — https://doi.org/10.1109/apeie59731.2023.10347597.
53. Watari S., Nakamura S. and Ebihara Y. Measurement of geomagnetically induced current (GIC) around Tokyo, Japan // Earth, Planets and Space. — 2021. — Vol. 73, no. 1. — P. 102. — https://doi.org/10.1186/s40623-021-01422-3.
54. Wik M., Viljanen A., Pirjola R., et al. Calculation of geomagnetically induced currents in the 400 kV power grid in southern Sweden // Space Weather. — 2008. — Vol. 6, no. 7. — S07005. — https://doi.org/10.1029/2007sw000343.
55. Yagova N. V., Pilipenko V. A., Sakharov Ya. A., et al. Spatial scale of geomagnetic Pc5/Pi3 pulsations as a factor of their efficiency in generation of geomagnetically induced currents // Earth, Planets and Space. — 2021. — Vol. 73, no. 1. — https://doi.org/10.1186/s40623-021-01407-2.
56. Zhang J. J., Wang C., Sun T. R., et al. GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation // Space Weather. — 2015. — Vol. 13, no. 10. — P. 643–655. — https://doi.org/10.1002/2015sw001263.




